/usr/include/TiledArray/tensor/utility.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | /*
* This file is a part of TiledArray.
* Copyright (C) 2015 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* untility.h
* Jun 1, 2015
*
*/
#ifndef TILEDARRAY_TENSOR_UTILITY_H__INCLUDED
#define TILEDARRAY_TENSOR_UTILITY_H__INCLUDED
#include <TiledArray/utility.h>
#include <TiledArray/range.h>
#include <TiledArray/block_range.h>
#include <TiledArray/size_array.h>
#include <TiledArray/tensor/type_traits.h>
namespace TiledArray {
namespace detail {
/// Create a copy of the range of the tensor
/// \tparam T The tensor type
/// \param tensor The tensor with the range to be cloned
/// \return A contiguous range with the same lower and upper bounds as the
/// range of \c tensor.
template <typename T,
typename std::enable_if<is_contiguous_tensor<T>::value>::type* = nullptr>
inline auto clone_range(const T& tensor) -> decltype(tensor.range())
{ return tensor.range(); }
/// Create a contiguous copy of the range of the tensor
/// \tparam T The tensor type
/// \param tensor The tensor with the range to be cloned
/// \return A contiguous range with the same lower and upper bounds as the
/// range of \c tensor.
template <typename T,
typename std::enable_if<! is_contiguous_tensor<T>::value>::type* = nullptr>
inline Range clone_range(const T& tensor) {
return Range(tensor.range().lobound(), tensor.range().upbound());
}
/// Test that the ranges of a pair of tensors are congruent
/// This function tests that the rank, lower bound, and upper bound of
/// \c tensor1 is equal to that of \c tensor2.
/// \tparam T1 The first tensor type
/// \tparam T2 The second tensor type
/// \param tensor1 The first tensor to be compared
/// \param tensor2 The second tensor to be compared
/// \return \c true if the rank and extents of the two tensors equal,
/// otherwise \c false.
template <typename T1, typename T2,
typename std::enable_if<! (is_shifted<T1>::value
|| is_shifted<T2>::value)>::type* = nullptr>
inline bool is_range_congruent(const T1& tensor1, const T2& tensor2) {
return tensor1.range() == tensor2.range();
}
/// Test that the ranges of a pair of permuted tensors are congruent
/// This function tests that the rank, lower bound, and upper bound of
/// \c tensor1 is equal to that of the permuted range of \c tensor2.
/// \tparam T1 The first tensor type
/// \tparam T2 The second tensor type
/// \param tensor1 The first tensor to be compared
/// \param tensor2 The second tensor to be compared
/// \param perm The permutation to be applied to \c tensor2
/// \return \c true if the rank and extents of the two tensors equal,
/// otherwise \c false.
template <typename T1, typename T2,
typename std::enable_if<! (is_shifted<T1>::value
|| is_shifted<T2>::value)>::type* = nullptr>
inline bool is_range_congruent(const T1& tensor1, const T2& tensor2,
const Permutation& perm)
{
return tensor1.range() == (perm * tensor2.range());
}
/// Test that the ranges of a pair of shifted tensors are congruent
/// This function tests that the extents of the two tensors are equal. One
/// or both of the tensors may be shifted.
/// \tparam T1 The first tensor type
/// \tparam T2 The second tensor type
/// \param tensor1 The first tensor to be compared
/// \param tensor2 The second tensor to be compared
/// \return \c true if the rank and extents of the two tensors equal,
/// otherwise \c false.
template <typename T1, typename T2,
typename std::enable_if<is_shifted<T1>::value
|| is_shifted<T2>::value>::type* = nullptr>
inline bool is_range_congruent(const T1& tensor1, const T2& tensor2) {
const auto rank1 = tensor1.range().rank();
const auto rank2 = tensor2.range().rank();
const auto* const extent1 = tensor1.range().extent_data();
const auto* const extent2 = tensor2.range().extent_data();
return (rank1 == rank2) && std::equal(extent1, extent1 + rank1, extent2);
}
/// Test that the ranges of a permuted tensor is congruent with itself
/// This function is used as the termination step for the recursive
/// \c is_range_set_congruent() function, and to handle the case of a single
/// tensor.
/// \tparam T The tensor type
/// \param perm The permutation
/// \param tensor The tensor
/// \return \c true
template <typename T>
inline constexpr bool
is_range_set_congruent(const Permutation& perm, const T& tensor) {
return true;
}
/// Test that the ranges of a permuted set of tensors are congruent
/// \tparam T1 The first tensor type
/// \tparam T2 The second tensor type
/// \tparam Ts The remaining tensor types
/// \param perm The permutation to be applied to \c tensor2 and \c tensors...
/// \param tensor1 The first tensor to be compared
/// \param tensor2 The second tensor to be compared
/// \param tensors The remaining tensor to be compared in recursive steps
/// \return \c true if all permuted tensors in the list are congruent with
/// the first tensor in the set, otherwise \c false.
template <typename T1, typename T2, typename... Ts>
inline bool is_range_set_congruent(const Permutation& perm,
const T1& tensor1, const T2& tensor2, const Ts&... tensors)
{
return is_range_congruent(tensor1, tensor2, perm)
&& is_range_set_congruent(perm, tensor1, tensors...);
}
/// Test that the ranges of a tensor is congruent with itself
/// This function is used as the termination step for the recursive
/// \c is_range_set_congruent() function, and to handle the case of a single
/// tensor.
/// \tparam T The tensor type
/// \param tensor The tensor
/// \return \c true
template <typename T>
inline constexpr bool is_range_set_congruent(const T& tensor) {
return true;
}
/// Test that the ranges of a set of tensors are congruent
/// \tparam T1 The first tensor type
/// \tparam T2 The second tensor type
/// \tparam Ts The remaining tensor types
/// \param tensor1 The first tensor to be compared
/// \param tensor2 The second tensor to be compared
/// \param tensors The remaining tensor to be compared in recursive steps
/// \return \c true if all tensors in the list are congruent with the
/// first tensor in the set, otherwise \c false.
template <typename T1, typename T2, typename... Ts>
inline bool is_range_set_congruent(const T1& tensor1, const T2& tensor2,
const Ts&... tensors)
{
return is_range_congruent(tensor1, tensor2)
&& is_range_set_congruent(tensor1, tensors...);
}
/// Get the inner size
/// This function searches of the largest contiguous size in the range of a
/// non-contiguous tensor. At a minimum, this is equal to the size of the
/// stride-one dimension.
/// \tparam T A tensor type
/// \param tensor The tensor to be tested
/// \return The largest contiguous, inner-dimension size.
template <typename T>
inline typename T::size_type inner_size_helper(const T& tensor) {
const auto* restrict const stride = tensor.range().stride_data();
const auto* restrict const size = tensor.range().extent_data();
int i = int(tensor.range().rank()) - 1;
auto volume = size[i];
for(--i; i >= 0; --i) {
const auto stride_i = stride[i];
const auto size_i = size[i];
if(volume != stride_i)
break;
volume *= size_i;
}
return volume;
}
/// Get the inner size of two tensors
/// This function searches of the largest, common contiguous size in the
/// ranges of two non-contiguous tensors. At a minimum, this is equal to the
/// size of the stride-one dimension.
/// \tparam T1 The first tensor type
/// \tparam T2 The secont tensor type
/// \param tensor1 The first tensor to be tested
/// \param tensor2 The second tensor to be tested
/// \return The largest contiguous, inner-dimension size of the two tensors.
template <typename T1, typename T2>
inline typename T1::size_type
inner_size_helper(const T1& tensor1, const T2& tensor2) {
TA_ASSERT(is_range_congruent(tensor1.range(), tensor2.range()));
const auto* restrict const size1 = tensor1.range().extent_data();
const auto* restrict const stride1 = tensor1.range().stride_data();
const auto* restrict const size2 = tensor2.range().extent_data();
const auto* restrict const stride2 = tensor2.range().stride_data();
int i = int(tensor1.range().rank()) - 1;
auto volume1 = size1[i];
auto volume2 = size2[i];
for(--i; i >= 0; --i) {
const auto stride1_i = stride1[i];
const auto stride2_i = stride2[i];
const auto size1_i = size1[i];
const auto size2_i = size2[i];
if((volume1 != stride1_i) || (volume2 != stride2_i))
break;
volume1 *= size1_i;
volume2 *= size2_i;
}
return volume1;
}
/// Get the inner size of two tensors
/// This function searches of the largest, common contiguous size in the
/// ranges of two non-contiguous tensors. At a minimum, this is equal to the
/// size of the stride-one dimension.
/// \tparam T1 The first tensor type
/// \tparam T2 The secont tensor type
/// \param tensor1 The first tensor to be tested
/// \return The largest contiguous, inner-dimension size.
template <typename T1, typename T2,
typename std::enable_if<! is_contiguous_tensor<T1>::value
&& is_contiguous_tensor<T2>::value>::type* = nullptr>
inline typename T1::size_type inner_size(const T1& tensor1, const T2&) {
return inner_size_helper(tensor1);
}
/// Get the inner size of two tensors
/// This function searches of the largest, common contiguous size in the
/// ranges of two non-contiguous tensors. At a minimum, this is equal to the
/// size of the stride-one dimension.
/// \tparam T1 The first tensor type
/// \tparam T2 The secont tensor type
/// \param tensor2 The second tensor to be tested
/// \return The largest contiguous, inner-dimension size.
template <typename T1, typename T2,
typename std::enable_if<is_contiguous_tensor<T1>::value
&& ! is_contiguous_tensor<T2>::value>::type* = nullptr>
inline typename T1::size_type inner_size(const T1&, const T2& tensor2) {
return inner_size_helper(tensor2);
}
/// Get the inner size of two tensors
/// This function searches of the largest, common contiguous size in the
/// ranges of two non-contiguous tensors. At a minimum, this is equal to the
/// size of the stride-one dimension.
/// \tparam T1 The first tensor type
/// \tparam T2 The secont tensor type
/// \param tensor1 The first tensor to be tested
/// \param tensor2 The second tensor to be tested
/// \return The largest common, contiguous inner-dimension size of the two
/// tensors.
template <typename T1, typename T2,
typename std::enable_if<! is_contiguous_tensor<T1>::value
&& ! is_contiguous_tensor<T2>::value>::type* = nullptr>
inline typename T1::size_type inner_size(const T1& tensor1, const T2& tensor2) {
return inner_size_helper(tensor1, tensor2);
}
/// Get the inner size
/// This function searches of the largest contiguous size in the range of a
/// non-contiguous tensor. At a minimum, this is equal to the size of the
/// stride-one dimension.
/// \tparam T A tensor type
/// \param tensor The tensor to be tested
/// \return The largest contiguous, inner-dimension size.
template <typename T,
typename std::enable_if<! is_contiguous_tensor<T>::value>::type* = nullptr>
inline typename T::size_type inner_size(const T& tensor) {
return inner_size_helper(tensor);
}
/// Test for empty tensors in an empty list
/// This function is used as the termination step for the recursive empty()
/// function. It also handles the case where there are no tensors in the
/// list.
/// \return \c true
inline constexpr bool empty() { return true; }
/// Test for empty tensors
/// \tparam T1 The first tensor type
/// \tparam Ts The remaining tensor types
/// \param tensor1 The first tensor to test
/// \param tensors The remaining tensors to test
/// \return \c true if one or more tensors are empty
template <typename T1, typename... Ts>
inline bool empty(const T1& tensor1, const Ts&... tensors) {
return tensor1.empty() && empty(tensors...);
}
} // namespace detail
} // namespace TiledArray
#endif // TILEDARRAY_TENSOR_UTILITY_H__INCLUDED
|