This file is indexed.

/usr/include/TiledArray/symm/permutation_group.h is in libtiledarray-dev 0.6.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2015  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Edward F Valeev, Justus Calvin
 *  Department of Chemistry, Virginia Tech
 *
 *  permutation_group.h
 *  May 13, 2015
 *
 */

#ifndef TILEDARRAY_SYMM_PERMUTATION_GROUP_H__INCLUDED
#define TILEDARRAY_SYMM_PERMUTATION_GROUP_H__INCLUDED

#include <numeric>
#include <algorithm>
#include <cassert>

#include <TiledArray/symm/permutation.h>

namespace TiledArray {

  namespace symmetry {

    /**
     * \addtogroup symmetry
     * @{
     */

    /// Permutation group

    /// PermutationGroup is a group of permutations. A permutation group is specified compactly by
    /// a generating set (set of permutations that can multiplicatively generate the entire group).
    class PermutationGroup {
    public:
      using Permutation = TiledArray::symmetry::Permutation;
      using element_type = Permutation;

    protected:

      /// Group generators
      std::vector<Permutation> generators_;
      /// Group elements
      std::vector<Permutation> elements_;

    public:

      // Compiler generated functions
      PermutationGroup(const PermutationGroup&) = default;
      PermutationGroup(PermutationGroup&&) = default;
      PermutationGroup& operator=(const PermutationGroup&) = default;
      PermutationGroup& operator=(PermutationGroup&&) = default;

      /// General constructor

      /// This constructs a permutation group from a set of generators.
      /// The order of generators does not matter, and repeated generators
      /// will be ignored (internally generators are stored as a sorted sequence).
      /// \param degree The number of elements in the set whose symmetry this group describes
      /// \param generators The generating set that defines this group
      PermutationGroup(std::vector<Permutation> generators) :
        generators_(std::move(generators))
      {
        init(generators_, elements_);
      }

      /// Group order accessor

      /// The order of the group is the number of elements in the group.
      /// For symmetric group \c G the order is factorial of \c G->degree()
      /// \return The order of the group
      unsigned int order() const { return elements_.size(); }

      /// Idenity element accessor

      /// \return the Identity element
      static Permutation identity() { return Permutation(); }

      /// Group element accessor

      /// \note Elements are ordered lexicograhically.
      /// \param i Index of the group element to be returned, \c 0<=i&&i<order()
      /// \return A const reference to the i-th group element
      const Permutation& operator[](unsigned int i) const {
        TA_ASSERT(i < elements_.size());
        return elements_[i];
      }

      /// Elements vector accessor

      /// \note Elements appear in lexicograhical order.
      /// \return A const reference to the vector of elements
      const std::vector<Permutation>& elements() const { return elements_; }

      /// Generators vector accessor

      /// \note Generators appear in lexicograhical order.
      /// \return A const reference to the vector of generators
      const std::vector<Permutation>& generators() const { return generators_; }

      /// @name Iterator accessors

      /// PermutationGroup iterators dereference to group elements, i.e. Permutation objects.
      /// Iterators can be used to iterate over group elements in lexicographical order. \sa operator[]
      /// @{

      /// forward iterator over the group elements pointing to the first element

      /// \return a std::vector<Permutation>::const_iterator object that points to the first element in the group
      std::vector<Permutation>::const_iterator begin() const {
        return elements_.begin();
      }

      /// forward iterator over the group elements pointing to the first element

      /// \return a std::vector<Permutation>::const_iterator object that points to the first element in the group
      std::vector<Permutation>::const_iterator cbegin() const {
        return elements_.cbegin();
      }

      /// forward iterator over the group elements pointing past the last element

      /// \return a std::vector<Permutation>::const_iterator object that points past the last element in the group
      std::vector<Permutation>::const_iterator end() const {
        return elements_.end();
      }

      /// forward iterator over the group elements pointing past the last element

      /// \return a std::vector<Permutation>::const_iterator object that points past the last element in the group
      std::vector<Permutation>::const_iterator cend() const {
        return elements_.cend();
      }

      /// @}

      /// Computes the domain of this group

      /// \tparam Set a container type in which the result will be returned (e.g. \c std::set )
      /// \return the domain of this permutation, as a sorted sequence
      template <typename Set>
      Set domain() const {
        Set result;
        // sufficient to loop over generators
        for(const auto& e: generators_) {
          const auto e_domain = e.domain<Set>();
          result.insert(e_domain.begin(), e_domain.end());
        }
        return result;
      }


    protected:

      PermutationGroup() {} // makes uninitialized group, all initialization is left to the derived class

      /// computes \c elements from \c generators
      /// \param[in,out] generators sequence set of generators; duplicate generators will be removed, generators will be resorted
      /// \param[out] elements resulting elements
      static void init(std::vector<Permutation>& generators,
                       std::vector<Permutation>& elements) {

        sort(generators.begin(), generators.end());
        auto unique_last = std::unique(generators.begin(), generators.end());
        generators.erase(unique_last, generators.end());
        { // eliminate identity from the generator list
          auto I_iter = std::find(generators.begin(), generators.end(), Permutation());
          if (I_iter != generators.end())
            generators.erase(I_iter);
        }

        // add the identity element first
        elements.emplace_back();

        /// add generators to the elements
        for(const auto& g: generators) {
          elements.push_back(g);
        }

        // Generate the remaining elements in the group by multiplying by generators
        for(unsigned int g = 1u; g < elements.size(); ++g) {
          for(const auto& G: generators) {
            Permutation e = elements[g] * G;
            if(std::find(elements.cbegin(), elements.cend(), e) == elements.cend()) {
              elements.emplace_back(std::move(e));
            }
          }
        }

        sort(elements.begin(), elements.end());
      }

    }; // class PermutationGroup

    /// PermutationGroup equality operator

    /// \param p1 The left-hand permutation group to be compared
    /// \param p2 The right-hand permutation group to be compared
    /// \return \c true if all elements of \c p1 and \c p2 are equal, otherwise \c false.
    inline bool operator==(const PermutationGroup& p1, const PermutationGroup& p2) {
      return (p1.order() == p2.order())
             && p1.elements() == p2.elements();
    }

    /// PermutationGroup inequality operator

    /// \param p1 The left-hand permutation group to be compared
    /// \param p2 The right-hand permutation group to be compared
    /// \return \c true if any element of \c p1 is not equal to that of \c p2,
    /// otherwise \c false.
    inline bool operator!=(const PermutationGroup& p1, const PermutationGroup& p2) {
      return ! operator==(p1, p2);
    }

    /// PermutationGroup less-than operator

    /// \param p1 The left-hand permutation group to be compared
    /// \param p2 The right-hand permutation group to be compared
    /// \return \c true if the elements of \c p1 are lexicographically less than
    /// that of \c p2, otherwise \c false.
    inline bool operator<(const PermutationGroup& p1, const PermutationGroup& p2) {
      return std::lexicographical_compare(p1.cbegin(), p1.cend(),
          p2.cbegin(), p2.cend());
    }

    /// Add permutation group to an output stream

    /// \param[out] output The output stream
    /// \param[in] p The permutation group to be added to the output stream
    /// \return The output stream
    inline std::ostream& operator<<(std::ostream& output, const PermutationGroup& p) {
      output << "{";
      for (auto i=p.cbegin(); i!=p.cend();) {
        output << *i;
        if (++i != p.cend())
          output << ", ";
      }
      output << "}";
      return output;
    }


    /// Symmetric group

    /// Symmetric group of degree \f$ n \f$ is a group of \em all permutations of set \f$ \{x_0, x_1, \dots x_{n-1}\} \f$
    /// where \f$ x_i \f$ are nonnegative integers.
    class SymmetricGroup final: public PermutationGroup {
      public:
        using index_type = Permutation::index_type;

        // Compiler generated functions
        SymmetricGroup() = delete;
        SymmetricGroup(const SymmetricGroup&) = default;
        SymmetricGroup(SymmetricGroup&&) = default;
        SymmetricGroup& operator=(const SymmetricGroup&) = default;
        SymmetricGroup& operator=(SymmetricGroup&&) = default;

        /// Construct symmetric group on domain \f$ \{0, 1, \dots n-1\} \f$, where \f$ n \f$ = \c degree
        /// \param degree the degree of this group
        SymmetricGroup(unsigned int degree) :
          SymmetricGroup(SymmetricGroup::iota_vector(degree))
        {
        }

        /// Construct symmetric group on domain \c [begin,end)
        /// \tparam InputIterator an input iterator type
        /// \param begin iterator pointing to the beginning of the range
        /// \param end iterator pointing to past the end of the range
        template <typename InputIterator,
                  typename std::enable_if< ::TiledArray::detail::is_input_iterator<InputIterator>::value>::type* = nullptr>
        SymmetricGroup(InputIterator begin, InputIterator end) :
          PermutationGroup(), domain_(begin, end)
        {
          for(auto iter=begin; iter!=end; ++iter) {
            TA_ASSERT(*iter >= 0);
          }

          const auto degree = domain_.size();

          // Add generators to the list of elements
          if(degree > 2u) {
            for(unsigned int i = 0u; i < degree; ++i) {
              // Construct the generator and add to the list
              unsigned int i1 = (i + 1u) % degree;
              generators_.emplace_back(Permutation::Map{{domain_[i],domain_[i1]},{domain_[i1],domain_[i]}});
            }
          } else if(degree == 2u) {
            // Construct the generator
            generators_.emplace_back(Permutation::Map{{domain_[0], domain_[1]}, {domain_[1], domain_[0]}});
          }

          init(generators_, elements_);
        }

        /// Construct symmetric group using domain as an initializer list

        /// \tparam Integer an integral type
        /// \param list An initializer list of Integer
        template <typename Integer,
                  typename std::enable_if<std::is_integral<Integer>::value>::type* = nullptr>
        explicit SymmetricGroup(std::initializer_list<Integer> list) :
            SymmetricGroup(list.begin(), list.end())
        {
        }

        /// Degree accessor

        /// The degree of the group is the number of elements in the set on which the group members act
        /// \return The degree of the group
        unsigned int degree() const { return domain_.size(); }

      private:
        std::vector<index_type> domain_;

        /// make vector {0, 1, ... n-1}
        static std::vector<index_type> iota_vector(size_t n) {
          std::vector<index_type> result(n);
          std::iota(result.begin(), result.end(), 0);
          return result;
        }

        SymmetricGroup(const std::vector<index_type>& domain) :
          SymmetricGroup(domain.begin(), domain.end())
        {
        }


    };

    /// determines whether a given MultiIndex is lexicographically smallest
    /// among all indices generated by the action of \c pg.
    /// \tparam MultiIndex a sequence type that is directly addressable, i.e. has a fast \c operator[]
    /// \param idx an Index object
    /// \param pg the PermutationGroup
    /// \return \c false if action of a permutation in \c pg can produce
    ///            an Index that is lexicographically smaller than \c idx (i.e. there exists
    ///            \c i such that \c pg[i]*idx is lexicographically less than \c idx), \c true otherwise
    template <typename MultiIndex>
    bool is_lexicographically_smallest(const MultiIndex& idx,
                                       const PermutationGroup& pg) {
      const auto idx_size = idx.size();
      for(const auto& p: pg) {
        for(size_t i=0; i!=idx_size; ++i) {
          auto idx_i = idx[i];
          auto idx_p_i = idx[p[i]];
          if (idx_p_i < idx_i)
            return false;
          if (idx_p_i > idx_i)
            break;
        }
      }
      return true;
    }

    /// Computes conjugate permutation group obtained by the action of a permutation

    /// Conjugate of group \f$ G \f$ under the action of element \f$ h \f$ is a group
    /// \f$ \{ a: a = h g h^{-1}, \forall g \in G \} \f$ .
    /// \note Since all permutation groups are subgroups of the symmetric group on the "infinite"
    /// set \f$ \{ 0, 1, \dots \} \f$, this can be used to "shift" the domain of \c G by action of
    /// \c h that permutes elements in the domain of \c G with those outside its domain, e.g.
    /// if \f$ G = S_2 \f$ on domain \f$ \{0,1\} \f$, conjugation with \f$ h = {1->2, 2->1} \f$
    /// will produce \f$ S_2 \f$ on domain \f$ \{0,2\} \f$.
    /// \param G input PermutationGroup
    /// \param h input Permutation
    /// \return conjugate PermutationGroup
    inline PermutationGroup conjugate(const PermutationGroup& G, const PermutationGroup::Permutation& h) {
      std::vector<PermutationGroup::Permutation> conjugate_generators;
      const auto h_inv = h.inv();
      for(const auto& generator: G.generators()) {
        conjugate_generators.emplace_back(h * generator * h_inv);
      }
      return PermutationGroup{std::move(conjugate_generators)};
    }

    /// Computes intersect of 2 PermutationGroups
    /// \note The intersect is guaranteed to be a subgroup for both groups, hence this is the largest common subgroup.
    /// \param G1 PermutationGroup
    /// \param G2 PermutationGroup
    /// \return PermutationGroup
    inline PermutationGroup intersect(const PermutationGroup& G1, const PermutationGroup& G2) {
      std::vector<PermutationGroup::Permutation> intersect_elements;
      std::set_intersection(G1.begin(), G1.end(),
                            G2.begin(), G2.end(),
                            std::back_inserter(intersect_elements));
      return PermutationGroup{std::move(intersect_elements)};
    }

    /// Computes the largest subgroup of a permutation group that leaves the given set of indices fixed.

    /// \tparam Set a set of indices
    /// \param G input PermutationGroup
    /// \param f input Set
    /// \return the fixed set subgroup of \c G
    template <typename Set>
    inline PermutationGroup
    stabilizer(const PermutationGroup& G, const Set& f) {
      std::vector<PermutationGroup::Permutation> stabilizer_generators;
      for(const auto& generator: G.generators()) {
        bool fixes_set = true;
        for (const auto& i: f) {
          if (generator.is_in_domain(i)) {
            fixes_set = false;
            break;
          }
        }
        if (fixes_set)
          stabilizer_generators.push_back(generator);
      }
      return PermutationGroup{std::move(stabilizer_generators)};
    }

    /** @}*/

  } // namespace symmetry
} // namespace TiledArray

#endif // TILEDARRAY_SYMM_PERMUTATION_GROUP_H__INCLUDED