/usr/include/TiledArray/sparse_shape.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 | /*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* sparse_shape.h
* Jul 9, 2013
*
*/
#ifndef TILEDARRAY_SPARSE_SHAPE_H__INCLUDED
#define TILEDARRAY_SPARSE_SHAPE_H__INCLUDED
#include <TiledArray/tensor.h>
#include <TiledArray/tiled_range.h>
#include <TiledArray/val_array.h>
#include <TiledArray/tensor/shift_wrapper.h>
#include <TiledArray/tensor/tensor_interface.h>
#include <typeinfo>
namespace TiledArray {
/// Arbitrary sparse shape
/// Sparse shape uses a \c Tensor of Frobenius norms to estimate the magnitude
/// of the data contained in tiles of an Array object. Because tiles may have
/// an arbitrary size, the norm data is normalized, internally, by dividing
/// the norms by the number of elements in each tile.
/// \f[
/// {\rm{shape}}_{ij...} = \frac{\|A_{ij...}\|}{N_i N_j ...}
/// \f]
/// where \f$ij...\f$ are tile indices, \f$\|A_{ij}\|\f$ is norm of tile
/// \f$ij...\f$, and \f$N_i N_j ...\f$ is the product of tile \f$ij...\f$ in
/// each dimension.
/// \tparam T The sparse element value type
/// \note Scaling operations, such as SparseShape<T>::scale , SparseShape<T>::gemm , etc.
/// accept generic scaling factors; internally (modulus of) the scaling factor is first
/// converted to T, then used (see SparseShape<T>::to_abs_factor).
template <typename T>
class SparseShape {
public:
typedef SparseShape<T> SparseShape_; ///< This object type
typedef T value_type; ///< The norm value type
static_assert(TiledArray::detail::is_scalar<T>::value,
"SparseShape<T> only supports scalar numeric types for T");
typedef typename Tensor<value_type>::size_type size_type; ///< Size type
private:
// T must be a numeric type
static_assert(std::is_floating_point<T>::value,
"SparseShape template type T must be a floating point type");
// Internal typedefs
typedef detail::ValArray<value_type> vector_type;
Tensor<value_type> tile_norms_; ///< Tile magnitude data
std::shared_ptr<vector_type> size_vectors_; ///< Tile size information
size_type zero_tile_count_; ///< Number of zero tiles
static value_type threshold_; ///< The zero threshold
template <typename Op>
static vector_type
recursive_outer_product(const vector_type* const size_vectors,
const unsigned int dim, const Op& op)
{
vector_type result;
if(dim == 1u) {
// Construct a modified copy of size_vector[0]
result = op(*size_vectors);
} else {
// Compute split the range and compute the outer products
const unsigned int middle = (dim >> 1u) + (dim & 1u);
const vector_type left = recursive_outer_product(size_vectors, middle, op);
const vector_type right = recursive_outer_product(size_vectors + middle, dim - middle, op);
// Compute the outer product of left and right
result = vector_type(left.size() * right.size());
result.outer_fill(left, right,
[] (const value_type left, const value_type right) { return left * right; });
}
return result;
}
/// Normalize tile norms
/// This function will divide each norm by the number of elements in the
/// tile. If the normalized norm is less than threshold, the value is set to
/// zero.
void normalize() {
const value_type threshold = threshold_;
const unsigned int dim = tile_norms_.range().rank();
const vector_type* restrict const size_vectors = size_vectors_.get();
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
if(dim == 1u) {
auto normalize_op = [threshold, &zero_tile_count] (value_type& norm, const value_type size) {
TA_ASSERT(norm >= value_type(0));
norm /= size;
if(norm < threshold) {
norm = value_type(0);
++zero_tile_count;
}
};
// This is the easy case where the data is a vector and can be
// normalized directly.
math::inplace_vector_op(normalize_op, size_vectors[0].size(), tile_norms_.data(),
size_vectors[0].data());
} else {
// Here the normalization constants are computed and multiplied by the
// norm data using a recursive, outer-product algorithm. This is done to
// minimize temporary memory requirements, memory bandwidth, and work.
auto inv_vec_op = [] (const vector_type& size_vector) {
return vector_type(size_vector,
[] (const value_type size) { return value_type(1) / size; });
};
// Compute the left and right outer products
const unsigned int middle = (dim >> 1u) + (dim & 1u);
const vector_type left = recursive_outer_product(size_vectors, middle, inv_vec_op);
const vector_type right = recursive_outer_product(size_vectors + middle, dim - middle, inv_vec_op);
auto normalize_op = [threshold, &zero_tile_count] (value_type& norm,
const value_type x, const value_type y)
{
TA_ASSERT(norm >= value_type(0));
norm *= x * y;
if(norm < threshold) {
norm = value_type(0);
++zero_tile_count;
}
};
math::outer(left.size(), right.size(), left.data(), right.data(),
tile_norms_.data(), normalize_op);
}
zero_tile_count_ = zero_tile_count;
}
static std::shared_ptr<vector_type>
initialize_size_vectors(const TiledRange& trange) {
// Allocate memory for size vectors
const unsigned int dim = trange.tiles_range().rank();
std::shared_ptr<vector_type> size_vectors(new vector_type[dim],
std::default_delete<vector_type[]>());
// Initialize the size vectors
for(unsigned int i = 0ul; i != dim; ++i) {
const size_type n = trange.data()[i].tiles_range().second - trange.data()[i].tiles_range().first;
size_vectors.get()[i] = vector_type(n, & (* trange.data()[i].begin()),
[] (const TiledRange1::range_type& tile)
{ return value_type(tile.second - tile.first); });
}
return size_vectors;
}
std::shared_ptr<vector_type> perm_size_vectors(const Permutation& perm) const {
const unsigned int n = tile_norms_.range().rank();
// Allocate memory for the contracted size vectors
std::shared_ptr<vector_type> result_size_vectors(new vector_type[n],
std::default_delete<vector_type[]>());
// Initialize the size vectors
for(unsigned int i = 0u; i < n; ++i) {
const unsigned int perm_i = perm[i];
result_size_vectors.get()[perm_i] = size_vectors_.get()[i];
}
return result_size_vectors;
}
SparseShape(const Tensor<T>& tile_norms, const std::shared_ptr<vector_type>& size_vectors,
const size_type zero_tile_count) :
tile_norms_(tile_norms), size_vectors_(size_vectors),
zero_tile_count_(zero_tile_count)
{ }
public:
/// Default constructor
/// Construct a shape with no data.
SparseShape() : tile_norms_(), size_vectors_(), zero_tile_count_(0ul) { }
/// Constructor
/// This constructor will normalize the tile norm, where the normalization
/// constant for each tile is the inverse of the number of elements in the
/// tile.
/// \param tile_norms The Frobenius norm of tiles
/// \param trange The tiled range of the tensor
SparseShape(const Tensor<value_type>& tile_norms, const TiledRange& trange) :
tile_norms_(tile_norms.clone()), size_vectors_(initialize_size_vectors(trange)),
zero_tile_count_(0ul)
{
TA_ASSERT(! tile_norms_.empty());
TA_ASSERT(tile_norms_.range() == trange.tiles_range());
normalize();
}
/// Collective constructor
/// This constructor will sum the tile_norms data across all processes (via
/// an all reduce). After the norms have been summed, it will be normalized.
/// The normalization constant for each tile is the inverse of the number of
/// elements in the tile.
/// \param world The world where the shape will live
/// \param tile_norms The Frobenius norm of tiles
/// \param trange The tiled range of the tensor
SparseShape(World& world, const Tensor<value_type>& tile_norms,
const TiledRange& trange) :
tile_norms_(tile_norms.clone()), size_vectors_(initialize_size_vectors(trange)),
zero_tile_count_(0ul)
{
TA_ASSERT(! tile_norms_.empty());
TA_ASSERT(tile_norms_.range() == trange.tiles_range());
// Do global initialization of norm data
world.gop.sum(tile_norms_.data(), tile_norms_.size());
normalize();
}
/// Copy constructor
/// Shallow copy of \c other.
/// \param other The other shape object to be copied
SparseShape(const SparseShape<T>& other) :
tile_norms_(other.tile_norms_), size_vectors_(other.size_vectors_),
zero_tile_count_(other.zero_tile_count_)
{ }
/// Copy assignment operator
/// Shallow copy of \c other.
/// \param other The other shape object to be copied
/// \return A reference to this object.
SparseShape<T>& operator=(const SparseShape<T>& other) {
tile_norms_ = other.tile_norms_;
size_vectors_ = other.size_vectors_;
zero_tile_count_ = other.zero_tile_count_;
return *this;
}
/// Validate shape range
/// \return \c true when range matches the range of this shape
bool validate(const Range& range) const {
if(tile_norms_.empty())
return false;
return (range == tile_norms_.range());
}
/// Check that a tile is zero
/// \tparam Index The type of the index
/// \return false
template <typename Index>
bool is_zero(const Index& i) const {
TA_ASSERT(! tile_norms_.empty());
return tile_norms_[i] < threshold_;
}
/// Check density
/// \return true
static constexpr bool is_dense() { return false; }
/// Sparsity of the shape
/// \return The fraction of tiles that are zero.
float sparsity() const {
TA_ASSERT(! tile_norms_.empty());
return float(zero_tile_count_) / float(tile_norms_.size());
}
/// Threshold accessor
/// \return The current threshold
static value_type threshold() { return threshold_; }
/// Set threshold to \c thresh
/// \param thresh The new threshold
static void threshold(const value_type thresh) { threshold_ = thresh; }
/// Tile norm accessor
/// \tparam Index The index type
/// \param index The index of the tile norm to retrieve
/// \return The norm of the tile at \c index
template <typename Index>
value_type operator[](const Index& index) const {
TA_ASSERT(! tile_norms_.empty());
return tile_norms_[index];
}
/// Transform the norm tensor with an operation
/// \return A deep copy of the norms of the object having
/// performed the operation Op.
/// Op should take a const ref to a Tensor<T> and return a Tensor<T>
/// Since the input tile norms have already been normalized the output
/// norms will avoid normalization, which is neccesary for correct behavior.
/// One example is when Op is an identity operation the output
/// SparseShape data will have the same values as this.
template<typename Op>
SparseShape_ transform(Op &&op) const {
Tensor<T> new_norms = op(tile_norms_);
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
const value_type threshold = threshold_;
auto apply_threshold = [threshold, &zero_tile_count](value_type &norm){
TA_ASSERT(norm >= value_type(0));
if(norm < threshold){
norm = value_type(0);
++zero_tile_count;
}
};
math::inplace_vector_op(apply_threshold, new_norms.range().volume(),
new_norms.data());
return SparseShape_(std::move(new_norms), size_vectors_,
zero_tile_count);
}
/// Data accessor
/// \return A reference to the \c Tensor object that stores shape data
const Tensor<value_type>& data() const { return tile_norms_; }
/// Initialization check
/// \return \c true when this shape has been initialized.
bool empty() const { return tile_norms_.empty(); }
/// Compute union of two shapes
/// \param mask The input shape, hard zeros are used to mask the output.
/// \return A shape that is masked by the mask.
SparseShape_ mask(const SparseShape_ &mask_shape) const {
TA_ASSERT(!tile_norms_.empty());
TA_ASSERT(!mask_shape.empty());
TA_ASSERT(tile_norms_.range() == mask_shape.tile_norms_.range());
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = zero_tile_count_;
auto op = [threshold, &zero_tile_count] (value_type left,
const value_type right)
{
if(left >= threshold && right < threshold) {
left = value_type(0);
++zero_tile_count;
}
return left;
};
Tensor<value_type> result_tile_norms =
tile_norms_.binary(mask_shape.tile_norms_, op);
return SparseShape_(result_tile_norms, size_vectors_, zero_tile_count);
}
/// Update sub-block of shape
/// Update a sub-block shape information with another shape object.
/// \tparam Index The bound index type
/// \param lower_bound The lower bound of the sub-block to be updated
/// \param upper_bound The upper bound of the sub-block to be updated
/// \param other The shape that will be used to update the sub-block
/// \return A new sparse shape object where the specified sub-block contains the data
/// result_tile_norms of \c other.
template <typename Index>
SparseShape update_block(const Index& lower_bound, const Index& upper_bound,
const SparseShape& other)
{
Tensor<value_type> result_tile_norms = tile_norms_.clone();
auto result_tile_norms_blk = result_tile_norms.block(lower_bound, upper_bound);
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = zero_tile_count_;
result_tile_norms_blk.inplace_binary(other.tile_norms_,
[threshold,&zero_tile_count] (value_type& l, const value_type r) {
// Update the zero tile count for the result
if((l < threshold) && (r >= threshold))
++zero_tile_count;
else if((l >= threshold) && (r < threshold))
--zero_tile_count;
// Update the tile norm value
l = r;
});
return SparseShape_(result_tile_norms, size_vectors_, zero_tile_count);
}
private:
/// Create a copy of a sub-block of the shape
/// \tparam Index The upper and lower bound array type
/// \param lower_bound The lower bound of the sub-block
/// \param upper_bound The upper bound of the sub-block
template <typename Index>
std::shared_ptr<vector_type>
block_range(const Index& lower_bound, const Index& upper_bound) const {
TA_ASSERT(detail::size(lower_bound) == tile_norms_.range().rank());
TA_ASSERT(detail::size(upper_bound) == tile_norms_.range().rank());
// Get the number dimensions of the the shape
const auto rank = detail::size(lower_bound);
const auto* restrict const lower = detail::data(lower_bound);
const auto* restrict const upper = detail::data(upper_bound);
std::shared_ptr<vector_type> size_vectors(new vector_type[rank],
std::default_delete<vector_type[]>());
for(auto i = 0ul; i < rank; ++i) {
// Get the new range size
const auto lower_i = lower[i];
const auto upper_i = upper[i];
const auto extent_i = upper_i - lower_i;
// Check that the input indices are in range
TA_ASSERT(lower_i < upper_i);
TA_ASSERT(upper_i <= tile_norms_.range().upbound_data()[i]);
// Construct the size vector for rank i
size_vectors.get()[i] = vector_type(extent_i,
size_vectors_.get()[i].data() + lower_i);
}
return size_vectors;
}
public:
/// Create a copy of a sub-block of the shape
/// \tparam Index The upper and lower bound array type
/// \param lower_bound The lower bound of the sub-block
/// \param upper_bound The upper bound of the sub-block
template <typename Index>
SparseShape block(const Index& lower_bound, const Index& upper_bound) const {
std::shared_ptr<vector_type> size_vectors =
block_range(lower_bound, upper_bound);
// Copy the data from arg to result
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
auto copy_op = [threshold,&zero_tile_count] (value_type& restrict result,
const value_type arg)
{
result = arg;
if(arg < threshold)
++zero_tile_count;
};
// Construct the result norms tensor
TensorConstView<value_type> block_view =
tile_norms_.block(lower_bound, upper_bound);
Tensor<value_type> result_norms((Range(block_view.range().extent())));
result_norms.inplace_binary(shift(block_view), copy_op);
return SparseShape(result_norms, size_vectors, zero_tile_count);
}
/// Create a scaled sub-block of the shape
/// \tparam Index The upper and lower bound array type
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
/// \param lower_bound The lower bound of the sub-block
/// \param upper_bound The upper bound of the sub-block
template <typename Index, typename Factor>
SparseShape block(const Index& lower_bound, const Index& upper_bound,
const Factor factor) const
{
const value_type abs_factor = to_abs_factor(factor);
std::shared_ptr<vector_type> size_vectors =
block_range(lower_bound, upper_bound);
// Copy the data from arg to result
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
auto copy_op = [abs_factor,threshold,&zero_tile_count] (value_type& restrict result,
const value_type arg)
{
result = arg * abs_factor;
if(result < threshold) {
++zero_tile_count;
result = value_type(0);
}
};
// Construct the result norms tensor
TensorConstView<value_type> block_view =
tile_norms_.block(lower_bound, upper_bound);
Tensor<value_type> result_norms((Range(block_view.range().extent())));
result_norms.inplace_binary(shift(block_view), copy_op);
return SparseShape(result_norms, size_vectors, zero_tile_count);
}
/// Create a copy of a sub-block of the shape
/// \param lower_bound The lower bound of the sub-block
/// \param upper_bound The upper bound of the sub-block
template <typename Index>
SparseShape block(const Index& lower_bound, const Index& upper_bound,
const Permutation& perm) const
{
return block(lower_bound, upper_bound).perm(perm);
}
/// Create a copy of a sub-block of the shape
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
/// \param lower_bound The lower bound of the sub-block
/// \param upper_bound The upper bound of the sub-block
template <typename Index, typename Factor>
SparseShape block(const Index& lower_bound, const Index& upper_bound,
const Factor factor, const Permutation& perm) const
{
return block(lower_bound, upper_bound, factor).perm(perm);
}
/// Create a permuted shape of this shape
/// \param perm The permutation to be applied
/// \return A new, permuted shape
SparseShape_ perm(const Permutation& perm) const {
return SparseShape_(tile_norms_.permute(perm), perm_size_vectors(perm),
zero_tile_count_);
}
/// Scale shape
/// Construct a new scaled shape as:
/// \f[
/// {(\rm{result})}_{ij...} = |(\rm{factor})| (\rm{this})_{ij...}
/// \f]
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
/// \param factor The scaling factor
/// \return A new, scaled shape
template <typename Factor>
SparseShape_ scale(const Factor factor) const {
TA_ASSERT(! tile_norms_.empty());
const value_type threshold = threshold_;
const value_type abs_factor = to_abs_factor(factor);
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
auto op = [threshold, &zero_tile_count, abs_factor] (value_type value) {
value *= abs_factor;
if(value < threshold) {
value = value_type(0);
++zero_tile_count;
}
return value;
};
Tensor<value_type> result_tile_norms = tile_norms_.unary(op);
return SparseShape_(result_tile_norms, size_vectors_, zero_tile_count);
}
/// Scale and permute shape
/// Compute a new scaled shape is computed as:
/// \f[
/// {(\rm{result})}_{ji...} = \rm{perm}(j,i) |(\rm{factor})| (\rm{this})_{ij...}
/// \f]
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
/// \param factor The scaling factor
/// \param perm The permutation that will be applied to this tensor.
/// \return A new, scaled-and-permuted shape
template <typename Factor>
SparseShape_ scale(const Factor factor, const Permutation& perm) const {
TA_ASSERT(! tile_norms_.empty());
const value_type threshold = threshold_;
const value_type abs_factor = to_abs_factor(factor);
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
auto op = [threshold, &zero_tile_count, abs_factor] (value_type value) {
value *= abs_factor;
if(value < threshold) {
value = value_type(0);
++zero_tile_count;
}
return value;
};
Tensor<value_type> result_tile_norms = tile_norms_.unary(op, perm);
return SparseShape_(result_tile_norms, perm_size_vectors(perm),
zero_tile_count);
}
/// Add shapes
/// Construct a new sum of shapes as:
/// \f[
/// {(\rm{result})}_{ij...} = (\rm{this})_{ij...} + (\rm{other})_{ij...}
/// \f]
/// \param other The shape to be added to this shape
/// \return A sum of shapes
SparseShape_ add(const SparseShape_& other) const {
TA_ASSERT(! tile_norms_.empty());
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
auto op = [threshold, &zero_tile_count] (value_type left,
const value_type right)
{
left += right;
if(left < threshold) {
left = value_type(0);
++zero_tile_count;
}
return left;
};
Tensor<value_type> result_tile_norms =
tile_norms_.binary(other.tile_norms_, op);
return SparseShape_(result_tile_norms, size_vectors_, zero_tile_count);
}
/// Add and permute shapes
/// Construct a new sum of shapes as:
/// \f[
/// {(\rm{result})}_{ji...} = \rm{perm}(i,j) (\rm{this})_{ij...} + (\rm{other})_{ij...}
/// \f]
/// \param other The shape to be added to this shape
/// \param perm The permutation that is applied to the result
/// \return the new shape, equals \c this + \c other
SparseShape_ add(const SparseShape_& other, const Permutation& perm) const {
TA_ASSERT(! tile_norms_.empty());
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
auto op = [threshold, &zero_tile_count] (value_type left,
const value_type right)
{
left += right;
if(left < threshold) {
left = value_type(0);
++zero_tile_count;
}
return left;
};
Tensor<value_type> result_tile_norms =
tile_norms_.binary(other.tile_norms_, op, perm);
return SparseShape_(result_tile_norms, perm_size_vectors(perm),
zero_tile_count);
}
/// Add and scale shapes
/// Construct a new sum of shapes as:
/// \f[
/// {(\rm{result})}_{ij...} = |(\rm{factor})| ((\rm{this})_{ij...} + (\rm{other})_{ij...})
/// \f]
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
/// \param other The shape to be added to this shape
/// \param factor The scaling factor
/// \return A scaled sum of shapes
template <typename Factor>
SparseShape_ add(const SparseShape_& other, const Factor factor) const {
TA_ASSERT(! tile_norms_.empty());
const value_type threshold = threshold_;
const value_type abs_factor = to_abs_factor(factor);
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
auto op = [threshold, &zero_tile_count, abs_factor] (value_type left,
const value_type right)
{
left += right;
left *= abs_factor;
if(left < threshold) {
left = value_type(0);
++zero_tile_count;
}
return left;
};
Tensor<value_type> result_tile_norms =
tile_norms_.binary(other.tile_norms_, op);
return SparseShape_(result_tile_norms, size_vectors_, zero_tile_count);
}
/// Add, scale, and permute shapes
/// Construct a new sum of shapes as:
/// \f[
/// {(\rm{result})}_{ij...} = |(\rm{factor})| ((\rm{this})_{ij...} + (\rm{other})_{ij...})
/// \f]
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
/// \param other The shape to be added to this shape
/// \param factor The scaling factor
/// \param perm The permutation that is applied to the result
/// \return A scaled and permuted sum of shapes
template <typename Factor>
SparseShape_ add(const SparseShape_& other, const Factor factor,
const Permutation& perm) const
{
TA_ASSERT(! tile_norms_.empty());
const value_type threshold = threshold_;
const value_type abs_factor = to_abs_factor(factor);
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
auto op = [threshold, &zero_tile_count, abs_factor]
(value_type left, const value_type right)
{
left += right;
left *= abs_factor;
if(left < threshold) {
left = value_type(0);
++zero_tile_count;
}
return left;
};
Tensor<value_type> result_tile_norms =
tile_norms_.binary(other.tile_norms_, op, perm);
return SparseShape_(result_tile_norms, perm_size_vectors(perm),
zero_tile_count);
}
SparseShape_ add(value_type value) const {
TA_ASSERT(! tile_norms_.empty());
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
Tensor<T> result_tile_norms(tile_norms_.range());
value = std::abs(value);
const unsigned int dim = tile_norms_.range().rank();
const vector_type* restrict const size_vectors = size_vectors_.get();
if(dim == 1u) {
auto add_const_op = [threshold, &zero_tile_count, value] (value_type norm,
const value_type size)
{
norm += value / std::sqrt(size);
if(norm < threshold) {
norm = 0;
++zero_tile_count;
}
return norm;
};
// This is the easy case where the data is a vector and can be
// normalized directly.
math::vector_op(add_const_op, size_vectors[0].size(), result_tile_norms.data(),
tile_norms_.data(), size_vectors[0].data());
} else {
// Here the normalization constants are computed and multiplied by the
// norm data using a recursive, outer algorithm. This is done to
// minimize temporary memory requirements, memory bandwidth, and work.
auto inv_sqrt_vec_op = [] (const vector_type size_vector) {
return vector_type(size_vector,
[] (const value_type size) { return value_type(1) / std::sqrt(size); });
};
// Compute the left and right outer products
const unsigned int middle = (dim >> 1u) + (dim & 1u);
const vector_type left = recursive_outer_product(size_vectors, middle, inv_sqrt_vec_op);
const vector_type right = recursive_outer_product(size_vectors + middle, dim - middle, inv_sqrt_vec_op);
math::outer_fill(left.size(), right.size(), left.data(), right.data(),
tile_norms_.data(), result_tile_norms.data(),
[threshold, &zero_tile_count, value] (value_type& norm,
const value_type x, const value_type y)
{
norm += value * x * y;
if(norm < threshold) {
norm = value_type(0);
++zero_tile_count;
}
});
}
return SparseShape_(result_tile_norms, size_vectors_, zero_tile_count);
}
SparseShape_ add(const value_type value, const Permutation& perm) const {
// TODO: Optimize this function so it does the permutation at the same
// time as the addition.
return add(value).perm(perm);
}
SparseShape_ subt(const SparseShape_& other) const {
return add(other);
}
SparseShape_ subt(const SparseShape_& other, const Permutation& perm) const {
return add(other, perm);
}
template <typename Factor>
SparseShape_ subt(const SparseShape_& other, const Factor factor) const {
return add(other, factor);
}
template <typename Factor>
SparseShape_ subt(const SparseShape_& other, const Factor factor,
const Permutation& perm) const
{
return add(other, factor, perm);
}
SparseShape_ subt(const value_type value) const {
return add(value);
}
SparseShape_ subt(const value_type value, const Permutation& perm) const {
return add(value, perm);
}
private:
static size_type scale_by_size(Tensor<T>& tile_norms,
const vector_type* restrict const size_vectors)
{
const unsigned int dim = tile_norms.range().rank();
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
if(dim == 1u) {
// This is the easy case where the data is a vector and can be
// normalized directly.
math::inplace_vector_op(
[threshold, &zero_tile_count] (value_type& norm, const value_type size) {
norm *= size;
if(norm < threshold) {
norm = value_type(0);
++zero_tile_count;
}
},
size_vectors[0].size(), tile_norms.data(), size_vectors[0].data());
} else {
// Here the normalization constants are computed and multiplied by the
// norm data using a recursive, outer algorithm. This is done to
// minimize temporary memory requirements, memory bandwidth, and work.
auto noop = [](const vector_type& size_vector) -> const vector_type& {
return size_vector;
};
// Compute the left and right outer products
const unsigned int middle = (dim >> 1u) + (dim & 1u);
const vector_type left = recursive_outer_product(size_vectors, middle, noop);
const vector_type right = recursive_outer_product(size_vectors + middle, dim - middle, noop);
math::outer(left.size(), right.size(), left.data(), right.data(), tile_norms.data(),
[threshold, &zero_tile_count] (value_type& norm, const value_type x,
const value_type y)
{
norm *= x * y;
if(norm < threshold) {
norm = value_type(0);
++zero_tile_count;
}
});
}
return zero_tile_count;
}
public:
SparseShape_ mult(const SparseShape_& other) const {
// TODO: Optimize this function so that the tensor arithmetic and
// scale_by_size operations are performed in one step instead of two.
TA_ASSERT(! tile_norms_.empty());
Tensor<T> result_tile_norms = tile_norms_.mult(other.tile_norms_);
const size_type zero_tile_count =
scale_by_size(result_tile_norms, size_vectors_.get());
return SparseShape_(result_tile_norms, size_vectors_, zero_tile_count);
}
SparseShape_ mult(const SparseShape_& other, const Permutation& perm) const {
// TODO: Optimize this function so that the tensor arithmetic and
// scale_by_size operations are performed in one step instead of two.
TA_ASSERT(! tile_norms_.empty());
Tensor<T> result_tile_norms = tile_norms_.mult(other.tile_norms_, perm);
std::shared_ptr<vector_type> result_size_vector = perm_size_vectors(perm);
const size_type zero_tile_count =
scale_by_size(result_tile_norms, result_size_vector.get());
return SparseShape_(result_tile_norms, result_size_vector, zero_tile_count);
}
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
template <typename Factor>
SparseShape_ mult(const SparseShape_& other, const Factor factor) const {
// TODO: Optimize this function so that the tensor arithmetic and
// scale_by_size operations are performed in one step instead of two.
TA_ASSERT(! tile_norms_.empty());
const value_type abs_factor = to_abs_factor(factor);
Tensor<T> result_tile_norms = tile_norms_.mult(other.tile_norms_, abs_factor);
const size_type zero_tile_count =
scale_by_size(result_tile_norms, size_vectors_.get());
return SparseShape_(result_tile_norms, size_vectors_, zero_tile_count);
}
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
template <typename Factor>
SparseShape_ mult(const SparseShape_& other, const Factor factor,
const Permutation& perm) const
{
// TODO: Optimize this function so that the tensor arithmetic and
// scale_by_size operations are performed in one step instead of two.
TA_ASSERT(! tile_norms_.empty());
const value_type abs_factor = to_abs_factor(factor);
Tensor<T> result_tile_norms = tile_norms_.mult(other.tile_norms_, abs_factor, perm);
std::shared_ptr<vector_type> result_size_vector = perm_size_vectors(perm);
const size_type zero_tile_count =
scale_by_size(result_tile_norms, result_size_vector.get());
return SparseShape_(result_tile_norms, result_size_vector, zero_tile_count);
}
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
template <typename Factor>
SparseShape_ gemm(const SparseShape_& other, const Factor factor,
const math::GemmHelper& gemm_helper) const
{
TA_ASSERT(! tile_norms_.empty());
const value_type abs_factor = to_abs_factor(factor);
const value_type threshold = threshold_;
madness::AtomicInt zero_tile_count;
zero_tile_count = 0;
integer M = 0, N = 0, K = 0;
gemm_helper.compute_matrix_sizes(M, N, K, tile_norms_.range(), other.tile_norms_.range());
// Allocate memory for the contracted size vectors
std::shared_ptr<vector_type> result_size_vectors(new vector_type[gemm_helper.result_rank()],
std::default_delete<vector_type[]>());
// Initialize the result size vectors
unsigned int x = 0ul;
for(unsigned int i = gemm_helper.left_outer_begin(); i < gemm_helper.left_outer_end(); ++i, ++x)
result_size_vectors.get()[x] = size_vectors_.get()[i];
for(unsigned int i = gemm_helper.right_outer_begin(); i < gemm_helper.right_outer_end(); ++i, ++x)
result_size_vectors.get()[x] = other.size_vectors_.get()[i];
// Compute the number of inner ranks
const unsigned int k_rank = gemm_helper.left_inner_end() - gemm_helper.left_inner_begin();
// Construct the result norm tensor
Tensor<value_type> result_norms(gemm_helper.make_result_range<typename Tensor<T>::range_type>(
tile_norms_.range(), other.tile_norms_.range()), 0);
if(k_rank > 0u) {
// Compute size vector
const vector_type k_sizes =
recursive_outer_product(size_vectors_.get() + gemm_helper.left_inner_begin(),
k_rank, [] (const vector_type& size_vector) -> const vector_type&
{ return size_vector; });
// TODO: Make this faster. It can be done without using temporaries
// for the arguments, but requires a custom matrix multiply.
Tensor<value_type> left(tile_norms_.range());
const size_type mk = M * K;
auto left_op = [] (const value_type left, const value_type right)
{ return left * right; };
for(size_type i = 0ul; i < mk; i += K)
math::vector_op(left_op, K, left.data() + i,
tile_norms_.data() + i, k_sizes.data());
Tensor<value_type> right(other.tile_norms_.range());
for(integer i = 0ul, k = 0; k < K; i += N, ++k) {
const value_type factor = k_sizes[k];
auto right_op = [=] (const value_type arg) { return arg * factor; };
math::vector_op(right_op, N, right.data() + i, other.tile_norms_.data() + i);
}
result_norms = left.gemm(right, abs_factor, gemm_helper);
// Hard zero tiles that are below the zero threshold.
result_norms.inplace_unary(
[threshold, &zero_tile_count] (value_type& value) {
if(value < threshold) {
value = value_type(0);
++zero_tile_count;
}
});
} else {
// This is an outer product, so the inputs can be used directly
math::outer_fill(M, N, tile_norms_.data(), other.tile_norms_.data(), result_norms.data(),
[threshold, &zero_tile_count, abs_factor] (const value_type left,
const value_type right)
{
value_type norm = left * right * abs_factor;
if(norm < threshold) {
norm = value_type(0);
++zero_tile_count;
}
return norm;
});
}
return SparseShape_(result_norms, result_size_vectors, zero_tile_count);
}
/// \tparam Factor The scaling factor type
/// \note expression abs(Factor) must be well defined (by default, std::abs will be used)
template <typename Factor>
SparseShape_ gemm(const SparseShape_& other, const Factor factor,
const math::GemmHelper& gemm_helper, const Permutation& perm) const
{
return gemm(other, factor, gemm_helper).perm(perm);
}
private:
template <typename Factor>
static value_type to_abs_factor(const Factor factor) {
using std::abs;
return static_cast<value_type>(abs(factor));
}
}; // class SparseShape
// Static member initialization
template <typename T>
typename SparseShape<T>::value_type SparseShape<T>::threshold_ = std::numeric_limits<T>::epsilon();
/// Add the shape to an output stream
/// \tparam T the numeric type supporting the type of \c shape
/// \param os The output stream
/// \param shape the SparseShape<T> object
/// \return A reference to the output stream
template <typename T>
inline std::ostream& operator<<(std::ostream& os, const SparseShape<T>& shape) {
os << "SparseShape<" << typeid(T).name() << ">:" << std::endl
<< shape.data() << std::endl;
return os;
}
#ifndef TILEDARRAY_HEADER_ONLY
extern template class SparseShape<float>;
#endif // TILEDARRAY_HEADER_ONLY
} // namespace TiledArray
#endif // TILEDARRAY_SPASE_SHAPE_H__INCLUDED
|