/usr/include/TiledArray/range.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 | /*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef TILEDARRAY_RANGE_H__INCLUDED
#define TILEDARRAY_RANGE_H__INCLUDED
#include <TiledArray/range_iterator.h>
#include <TiledArray/permutation.h>
#include <TiledArray/size_array.h>
namespace TiledArray {
/// \brief A (hyperrectangular) interval on \f$ Z^n \f$, space of integer n-indices
/// This object represents an n-dimensional, hyperrectangular array
/// of integers. It provides information on the rank (number of dimensions),
/// (nonnegative) lower bound, upper bound, extent (size), and stride of
/// each dimension. It can also be used to
/// test if an element is included in the range with a coordinate index or
/// ordinal offset. Finally, it can be used to convert coordinate indices to
/// ordinal offsets and vice versa.
/// TODO add Range support for negative indices
class Range {
public:
typedef Range Range_; ///< This object type
typedef std::size_t size_type; ///< Size type
typedef std::vector<size_type> index; ///< Coordinate index type
typedef index index_type; ///< Coordinate index type, to conform Tensor Working Group spec
typedef detail::SizeArray<const size_type> size_array; ///< Size array type
typedef size_array extent_type; ///< Range extent type, to conform Tensor Working Group spec
typedef std::size_t ordinal_type; ///< Ordinal type, to conform Tensor Working Group spec
typedef detail::RangeIterator<size_type, Range_> const_iterator; ///< Coordinate iterator
friend class detail::RangeIterator<size_type, Range_>;
protected:
size_type* data_ = nullptr;
///< An array that holds the dimension information of the
///< range. The layout of the array is:
///< \code
///< { lobound[0], ..., lobound[rank_ - 1],
///< upbound[0], ..., upbound[rank_ - 1],
///< extent[0], ..., extent[rank_ - 1],
///< stride[0], ..., stride[rank_ - 1] }
///< \endcode
size_type offset_ = 0ul; ///< Ordinal index offset correction
size_type volume_ = 0ul; ///< Total number of elements
unsigned int rank_ = 0u; ///< The rank (or number of dimensions) in the range
private:
/// Initialize range data from lower and upper bounds
/// \tparam Index An array type
/// \param lower_bound The lower bound of the range
/// \param upper_bound The upper bound of the range
/// \pre Assume \c rank_ is initialized to the rank of the range and
/// \c data_ has been allocated to hold 4*rank_ elements
/// \post \c data_ and \c volume_ are initialized with range dimension
/// information.
template <typename Index>
void init_range_data(const Index& lower_bound, const Index& upper_bound) {
// Construct temp pointers
size_type* restrict const lower = data_;
size_type* restrict const upper = lower + rank_;
size_type* restrict const extent = upper + rank_;
size_type* restrict const stride = extent + rank_;
const auto* restrict const lower_data = detail::data(lower_bound);
const auto* restrict const upper_data = detail::data(upper_bound);
// Set the volume seed
volume_ = 1ul;
offset_ = 0ul;
// Compute range data
for(int i = int(rank_) - 1; i >= 0; --i) {
// Check input dimensions
TA_ASSERT(lower_data[i] >= 0ul);
TA_ASSERT(lower_data[i] < upper_data[i]);
// Compute data for element i of lower, upper, and extent
const size_type lower_bound_i = lower_data[i];
const size_type upper_bound_i = upper_data[i];
const size_type extent_i = upper_bound_i - lower_bound_i;
lower[i] = lower_bound_i;
upper[i] = upper_bound_i;
extent[i] = extent_i;
stride[i] = volume_;
offset_ += lower_bound_i * volume_;
volume_ *= extent_i;
}
}
/// Initialize range data from a size array
/// \tparam Index An array type
/// \param upper_bound The upper bound of the range
/// \pre Assume \c rank_ is initialized to the rank of the range and
/// \c data_ has been allocated to hold 4*rank_ elements
/// \post \c data_ and \c volume_ are initialized with range dimension
/// information.
template <typename Index>
void init_range_data(const Index& upper_bound) {
// Construct temp pointers
size_type* restrict const lower = data_;
size_type* restrict const upper = lower + rank_;
size_type* restrict const extent = upper + rank_;
size_type* restrict const stride = extent + rank_;
const auto* restrict const upper_data = detail::data(upper_bound);
// Set the offset and volume initial values
volume_ = 1ul;
offset_ = 0ul;
// Compute range data
for(int i = int(rank_) - 1; i >= 0; --i) {
// Check bounds of the input extent
TA_ASSERT(upper_data[i] > 0ul);
// Get extent i
const size_type extent_i = upper_data[i];
lower[i] = 0ul;
upper[i] = extent_i;
extent[i] = extent_i;
stride[i] = volume_;
volume_ *= extent_i;
}
}
/// Initialize permuted range data from lower and upper bounds
/// \param other_lower_bound The lower bound of the unpermuted range
/// \param other_upper_bound The upper bound of the unpermuted range
/// \pre Assume \c rank_ is initialized to the rank of the range and
/// \c data_ has been allocated to hold 4*rank_ elements
/// \post \c data_, \c offset_, and \c volume_ are initialized with the
/// permuted range dimension information from \c other_lower_bound and
/// \c other_upper_bound.
void init_range_data(const Permutation& perm,
const size_type* restrict const other_lower_bound,
const size_type* restrict const other_upper_bound)
{
// Create temporary pointers to this range data
auto* restrict const lower = data_;
auto* restrict const upper = lower + rank_;
auto* restrict const extent = upper + rank_;
auto* restrict const stride = extent + rank_;
// Copy the permuted lower, upper, and extent into this range.
for(unsigned int i = 0u; i < rank_; ++i) {
const auto perm_i = perm[i];
// Get the lower bound, upper bound, and extent from other for rank i.
const auto other_lower_bound_i = other_lower_bound[i];
const auto other_upper_bound_i = other_upper_bound[i];
const auto other_extent_i = other_upper_bound_i - other_lower_bound_i;
// Store the permuted lower bound, upper bound, and extent
lower[perm_i] = other_lower_bound_i;
upper[perm_i] = other_upper_bound_i;
extent[perm_i] = other_extent_i;
}
// Recompute stride, offset, and volume
volume_ = 1ul;
offset_ = 0ul;
for(int i = int(rank_) - 1; i >= 0; --i) {
const auto lower_i = lower[i];
const auto extent_i = extent[i];
stride[i] = volume_;
offset_ += lower_i * volume_;
volume_ *= extent_i;
}
}
public:
/// Default constructor
/// Construct a range that has zero rank, volume, and size.
Range() { }
/// Construct range defined by an upper and lower bound
/// Construct a range diffined by \c lower_boudn and \c upper_bound.
/// \tparam Index An array type
/// \param lower_bound A vector of lower bounds for each dimension
/// \param upper_bound A vector of upper bounds for each dimension
/// \throw TiledArray::Exception When the size of \c lower_bound is not
/// equal to that of \c upper_bound.
/// \throw TiledArray::Exception When lower_bound[i] >= upper_bound[i]
/// \throw std::bad_alloc When memory allocation fails.
template <typename Index,
typename std::enable_if<! std::is_integral<Index>::value>::type* = nullptr>
Range(const Index& lower_bound, const Index& upper_bound) {
const size_type n = detail::size(lower_bound);
TA_ASSERT(n == detail::size(upper_bound));
if(n) {
// Initialize array memory
data_ = new size_type[n << 2];
rank_ = n;
init_range_data(lower_bound, upper_bound);
}
}
/// Construct range defined by an upper and lower bound
/// Construct a range defined by \c lower_boudn and \c upper_bound.
/// \param lower_bound An initializer list of lower bounds for each dimension
/// \param upper_bound An initializer list of upper bounds for each dimension
/// \throw TiledArray::Exception When the size of \c lower_bound is not
/// equal to that of \c upper_bound.
/// \throw TiledArray::Exception When lower_bound[i] >= upper_bound[i]
/// \throw std::bad_alloc When memory allocation fails.
Range(const std::initializer_list<size_type>& lower_bound,
const std::initializer_list<size_type>& upper_bound)
{
const size_type n = detail::size(lower_bound);
TA_ASSERT(n == detail::size(upper_bound));
if(n) {
// Initialize array memory
data_ = new size_type[n << 2];
rank_ = n;
init_range_data(lower_bound, upper_bound);
}
}
/// Range constructor from size array
/// Construct a range with a lower bound of zero and an upper bound equal to
/// \c extent.
/// \tparam Index A vector type
/// \param extent A vector that defines the size of each dimension
/// \throw std::bad_alloc When memory allocation fails.
template <typename Index,
typename std::enable_if<! std::is_integral<Index>::value>::type* = nullptr>
explicit Range(const Index& extent) {
const size_type n = detail::size(extent);
if(n) {
// Initialize array memory
data_ = new size_type[n << 2];
rank_ = n;
init_range_data(extent);
}
}
/// Range constructor from size array
/// Construct a range with a lower bound of zero and an upper bound equal to
/// \c extent.
/// \param extent An initializer list that defines the size of each dimension
/// \throw std::bad_alloc When memory allocation fails.
explicit Range(const std::initializer_list<size_type>& extent) {
const size_type n = detail::size(extent);
if(n) {
// Initialize array memory
data_ = new size_type[n << 2];
rank_ = n;
init_range_data(extent);
}
}
/// Range constructor from a pack of sizes for each dimension
/// \tparam Index An array type
/// \param upper_bound The upper bound of the N-dimensional range
/// \post Range has an lower bound of 0, and an upper bound of \c (sizes...).
/// \throw std::bad_alloc When memory allocation fails.
template<typename... Index,
typename std::enable_if<detail::is_integral_list<Index...>::value>::type* = nullptr>
explicit Range(const Index... upper_bound) :
Range(std::array<size_t, sizeof...(Index)>{{upper_bound...}})
{ }
/// Copy Constructor
/// \param other The range to be copied
/// \throw std::bad_alloc When memory allocation fails.
Range(const Range_& other) {
if(other.rank_ > 0ul) {
data_ = new size_type[other.rank_ << 2];
offset_ = other.offset_;
volume_ = other.volume_;
rank_ = other.rank_;
memcpy(data_, other.data_, (sizeof(size_type) << 2) * other.rank_);
}
}
/// Copy Constructor
/// \param other The range to be copied
/// \throw std::bad_alloc When memory allocation fails.
Range(Range_&& other) :
data_(other.data_), offset_(other.offset_), volume_(other.volume_),
rank_(other.rank_)
{
other.data_ = nullptr;
other.offset_ = 0ul;
other.volume_ = 0ul;
other.rank_ = 0u;
}
/// Permuting copy constructor
/// \param perm The permutation applied to other
/// \param other The range to be permuted and copied
/// \throw std::bad_alloc When memory allocation fails.
Range(const Permutation& perm, const Range_& other) {
TA_ASSERT(perm.dim() == other.rank_);
if(other.rank_ > 0ul) {
data_ = new size_type[other.rank_ << 2];
rank_ = other.rank_;
if(perm) {
init_range_data(perm, other.data_, other.data_ + rank_);
} else {
// Simple copy will due.
memcpy(data_, other.data_, (sizeof(size_type) << 2) * rank_);
offset_ = other.offset_;
volume_ = other.volume_;
}
}
}
/// Destructor
~Range() { delete [] data_; }
/// Copy assignment operator
/// \param other The range to be copied
/// \return A reference to this object
/// \throw std::bad_alloc When memory allocation fails.
Range_& operator=(const Range_& other) {
if(rank_ != other.rank_) {
delete [] data_;
data_ = (other.rank_ > 0ul ? new size_type[other.rank_ << 2] : nullptr);
rank_ = other.rank_;
}
memcpy(data_, other.data_, (sizeof(size_type) << 2) * rank_);
offset_ = other.offset_;
volume_ = other.volume_;
return *this;
}
/// Move assignment operator
/// \param other The range to be copied
/// \return A reference to this object
/// \throw nothing
Range_& operator=(Range_&& other) {
data_ = other.data_;
offset_ = other.offset_;
volume_ = other.volume_;
rank_ = other.rank_;
other.data_ = nullptr;
other.offset_ = 0ul;
other.volume_ = 0ul;
other.rank_ = 0u;
return *this;
}
/// Rank accessor
/// \return The rank (number of dimensions) of this range
/// \throw nothing
unsigned int rank() const { return rank_; }
/// Range lower bound data accessor
/// \return A pointer to the lower bound data (see <tt>lobound()</tt>)
/// \throw nothing
const size_type* lobound_data() const { return data_; }
/// Range lower bound accessor
/// \return A \c size_array that contains the lower bounds for each
/// dimension of the block range.
/// \throw nothing
size_array lobound() const { return size_array(lobound_data(), rank_); }
/// Range upper bound data accessor
/// \return A pointer to the upper bound data (see <tt>upbound()</tt>)
/// \throw nothing
const size_type* upbound_data() const { return data_ + rank_; }
/// Range upper bound accessor
/// \return A \c size_array that contains the upper bounds for each
/// dimension of the block range.
/// \throw nothing
size_array upbound() const {
return size_array(upbound_data(), rank_);
}
/// Range extent data accessor
/// \return A pointer to the extent data (see <tt>extent()</tt>)
/// \throw nothing
const size_type* extent_data() const { return data_ + (rank_ + rank_); }
/// Range extent accessor
/// \return A \c extent_type that contains the extent for each dimension of
/// the block range.
/// \throw nothing
extent_type extent() const {
return size_array(extent_data(), rank_);
}
/// Range stride data accessor
/// \return A pointer to the stride data (see <tt>stride()</tt>)
/// \throw nothing
const size_type* stride_data() const { return data_ + (rank_ + rank_ + rank_); }
/// Upper bound accessor
/// \return A \c size_array that contains the stride for each dimension of
/// the block range.
/// \throw nothing
size_array stride() const {
return size_array(stride_data(), rank_);
}
/// Range volume accessor
/// \return The total number of elements in the range.
/// \throw nothing
ordinal_type volume() const { return volume_; }
/// alias to volume() to conform to the Tensor Working Group specification
/// \return The total number of elements in the range.
/// \throw nothing
ordinal_type area() const { return volume_; }
/// Range offset
/// The range ordinal offset is equal to the dot product of the lower bound
/// and stride vector. It is used internally to compute ordinal offsets.
/// \return The ordinal index offset
ordinal_type offset() const { return offset_; }
/// Index iterator factory
/// The iterator dereferences to an index. The order of iteration matches
/// the data layout of a dense tensor.
/// \return An iterator that holds the lower bound index of a tensor
/// \throw nothing
const_iterator begin() const { return const_iterator(data_, this); }
/// Index iterator factory
/// The iterator dereferences to an index. The order of iteration matches
/// the data layout of a dense tensor.
/// \return An iterator that holds the lower bound element index of a tensor
/// \throw nothing
const_iterator end() const { return const_iterator(data_ + rank_, this); }
/// Check the coordinate to make sure it is within the range.
/// \tparam Index The coordinate index array type
/// \param index The coordinate index to check for inclusion in the range
/// \return \c true when <tt>i >= start</tt> and <tt>i < finish</tt>,
/// otherwise \c false
/// \throw TiledArray::Exception When the rank of this range is not
/// equal to the size of the index.
template <typename Index,
typename std::enable_if<! std::is_integral<Index>::value, bool>::type* = nullptr>
bool includes(const Index& index) const {
TA_ASSERT(detail::size(index) == rank_);
const size_type* restrict const lower = data_;
const size_type* restrict const upper = lower + rank_;
bool result = (rank_ > 0u);
auto it = std::begin(index); // TODO C++14 switch to std::cbegin
for(unsigned int i = 0u; result && (i < rank_); ++i, ++it) {
const size_type index_i = *it;
const size_type lower_i = lower[i];
const size_type upper_i = upper[i];
result = result && (index_i >= lower_i) && (index_i < upper_i);
}
return result;
}
/// Check the coordinate to make sure it is within the range.
/// \tparam Integer An integer type
/// \param index The element index to check for inclusion in the range,
/// as an \c std::initializer_list<Integer>
/// \return \c true when <tt>i >= start</tt> and <tt>i < finish</tt>,
/// otherwise \c false
/// \throw TiledArray::Exception When the rank of this range is not
/// equal to the size of the index.
template <typename Integer>
bool includes(const std::initializer_list<Integer>& index) const {
return includes<std::initializer_list<Integer>>(index);
}
/// Check the ordinal index to make sure it is within the range.
/// \param i The ordinal index to check for inclusion in the range
/// \return \c true when \c i \c >= \c 0 and \c i \c < \c volume
/// \throw nothing
template <typename Ordinal>
typename std::enable_if<std::is_integral<Ordinal>::value, bool>::type
includes(Ordinal i) const {
return include_ordinal_(i);
}
template <typename... Index>
typename std::enable_if<(sizeof...(Index) > 1ul), size_type>::type
includes(const Index&... index) const {
const size_type i[sizeof...(Index)] = {static_cast<size_type>(index)...};
return includes(i);
}
/// Permute this range
/// \param perm The permutation to be applied to this range
/// \return A reference to this range
/// \throw TiledArray::Exception When the rank of this range is not
/// equal to the rank of the permutation.
/// \throw std::bad_alloc When memory allocation fails.
Range_& operator *=(const Permutation& perm);
/// Resize range to a new upper and lower bound
/// \tparam Index An array type
/// \param lower_bound The lower bounds of the N-dimensional range
/// \param upper_bound The upper bound of the N-dimensional range
/// \return A reference to this range
/// \throw TiledArray::Exception When the size of \c lower_bound is not
/// equal to that of \c upper_bound.
/// \throw TiledArray::Exception When <tt>lower_bound[i] >= upper_bound[i]</tt>
/// \throw std::bad_alloc When memory allocation fails.
template <typename Index>
Range_& resize(const Index& lower_bound, const Index& upper_bound) {
const size_type n = detail::size(lower_bound);
TA_ASSERT(n == detail::size(upper_bound));
// Reallocate memory for range arrays
if(rank_ != n) {
delete [] data_;
data_ = (n > 0ul ? new size_type[n << 2] : nullptr);
rank_ = n;
}
if(n > 0ul)
init_range_data(lower_bound, upper_bound);
else
volume_ = 0ul;
return *this;
}
/// Shift the lower and upper bound of this range
/// \tparam Index The shift array type
/// \param bound_shift The shift to be applied to the range
/// \return A reference to this range
template <typename Index>
Range_& inplace_shift(const Index& bound_shift) {
const unsigned int n = detail::size(bound_shift);
TA_ASSERT(n == rank_);
const auto* restrict const bound_shift_data = detail::data(bound_shift);
size_type* restrict const lower = data_;
size_type* restrict const upper = data_ + rank_;
const size_type* restrict const stride = upper + rank_ + rank_;
offset_ = 0ul;
for(unsigned i = 0u; i < rank_; ++i) {
// Load range data
const auto bound_shift_i = bound_shift_data[i];
auto lower_i = lower[i];
auto upper_i = upper[i];
const auto stride_i = stride[i];
// Compute new range bounds
lower_i += bound_shift_i;
upper_i += bound_shift_i;
// Update range data
offset_ += lower_i * stride_i;
lower[i] = lower_i;
upper[i] = upper_i;
}
return *this;
}
/// Shift the lower and upper bound of this range
/// \tparam Index The shift array type
/// \param bound_shift The shift to be applied to the range
/// \return A shifted copy of this range
template <typename Index>
Range_ shift(const Index& bound_shift) {
Range_ result(*this);
result.inplace_shift(bound_shift);
return result;
}
/// calculate the ordinal index of \c i
/// This function is just a pass-through so the user can call \c ordinal() on
/// a template parameter that can be a coordinate index or an integral.
/// \param index Ordinal index
/// \return \c index (unchanged)
/// \throw When \c index is not included in this range
ordinal_type ordinal(const ordinal_type index) const {
TA_ASSERT(includes(index));
return index;
}
/// calculate the ordinal index of \c index
/// Convert a coordinate index to an ordinal index.
/// \tparam Index A coordinate index type (array type)
/// \param index The index to be converted to an ordinal index
/// \return The ordinal index of \c index
/// \throw When \c index is not included in this range.
template <typename Index,
typename std::enable_if<! std::is_integral<Index>::value>::type* = nullptr>
ordinal_type ordinal(const Index& index) const {
TA_ASSERT(detail::size(index) == rank_);
TA_ASSERT(includes(index));
size_type* restrict const stride = data_ + rank_ + rank_ + rank_;
size_type result = 0ul;
auto index_it = std::begin(index);
for(unsigned int i = 0u; i < rank_; ++i, ++index_it) {
const size_type stride_i = stride[i];
result += *(index_it) * stride_i;
}
return result - offset_;
}
/// calculate the ordinal index of \c index
/// Convert a coordinate index to an ordinal index.
/// \tparam Index A coordinate index type (array type)
/// \param index The index to be converted to an ordinal index
/// \return The ordinal index of \c index
/// \throw When \c index is not included in this range.
template <typename... Index,
typename std::enable_if<(sizeof...(Index) > 1ul)>::type* = nullptr>
size_type ordinal(const Index&... index) const {
const size_type temp_index[sizeof...(Index)] = { static_cast<size_type>(index)... };
return ordinal(temp_index);
}
/// calculate the coordinate index of the ordinal index, \c index.
/// Convert an ordinal index to a coordinate index.
/// \param index Ordinal index
/// \return The index of the ordinal index
/// \throw TiledArray::Exception When \c index is not included in this range
/// \throw std::bad_alloc When memory allocation fails
index idx(size_type index) const {
// Check that index is contained by range.
TA_ASSERT(includes(index));
// Construct result coordinate index object and allocate its memory.
Range_::index result(rank_, 0);
// Get pointers to the data
size_type * restrict const result_data = result.data();
size_type const * restrict const lower = data_;
size_type const * restrict const size = data_ + rank_ + rank_;
// Compute the coordinate index of index in range.
for(int i = int(rank_) - 1; i >= 0; --i) {
const size_type lower_i = lower[i];
const size_type size_i = size[i];
// Compute result index element i
const size_type result_i = (index % size_i) + lower_i;
index /= size_i;
// Store result
result_data[i] = result_i;
}
return result;
}
/// calculate the index of \c i
/// This function is just a pass-through so the user can call \c idx() on
/// a template parameter that can be an index or an ordinal_type.
/// \param i The index
/// \return \c i (unchanged)
template <typename Index,
typename std::enable_if<! std::is_integral<Index>::value>::type* = nullptr>
const Index& idx(const Index& i) const {
TA_ASSERT(includes(i));
return i;
}
template <typename Archive,
typename std::enable_if<madness::archive::is_input_archive<Archive>::value>::type* = nullptr>
void serialize(const Archive& ar) {
// Get rank
unsigned int rank = 0ul;
ar & rank;
// Reallocate the array
const unsigned int four_x_rank = rank << 2;
if(rank_ != rank) {
delete [] data_;
data_ = (rank > 0u ? new size_type[four_x_rank] : nullptr);
rank_ = rank;
}
// Get range data
ar & madness::archive::wrap(data_, four_x_rank) & offset_ & volume_;
}
template <typename Archive,
typename std::enable_if<madness::archive::is_output_archive<Archive>::value>::type* = nullptr>
void serialize(const Archive& ar) const {
ar & rank_ & madness::archive::wrap(data_, rank_ << 2) & offset_ & volume_;
}
void swap(Range_& other) {
// Get temp data
std::swap(data_, other.data_);
std::swap(offset_, other.offset_);
std::swap(volume_, other.volume_);
std::swap(rank_, other.rank_);
}
private:
/// Check that a signed integral value is include in this range
/// \tparam Index A signed integral type
/// \param i The ordinal index to check
/// \return \c true when <tt>i >= 0</tt> and <tt>i < volume_</tt>, otherwise
/// \c false.
template <typename Index>
typename std::enable_if<std::is_signed<Index>::value, bool>::type
include_ordinal_(Index i) const { return (i >= Index(0)) && (i < Index(volume_)); }
/// Check that an unsigned integral value is include in this range
/// \tparam Index An unsigned integral type
/// \param i The ordinal index to check
/// \return \c true when <tt>i < volume_</tt>, otherwise \c false.
template <typename Index>
typename std::enable_if<! std::is_signed<Index>::value, bool>::type
include_ordinal_(Index i) const { return i < volume_; }
/// Increment the coordinate index \c i in this range
/// \param[in,out] i The coordinate index to be incremented
/// \throw TiledArray::Exception When the rank of i is not equal to
/// the rank of this range
/// \throw TiledArray::Exception When \c i or \c i+n is outside this range
void increment(index& i) const {
TA_ASSERT(includes(i));
size_type const * restrict const lower = data_;
size_type const * restrict const upper = data_ + rank_;
for(int d = int(rank_) - 1; d >= 0; --d) {
// increment coordinate
++i[d];
// break if done
if(i[d] < upper[d])
return;
// Reset current index to lower bound.
i[d] = lower[d];
}
// if the current location was set to lower then it was at the end and
// needs to be reset to equal upper.
std::copy(upper, upper + rank_, i.begin());
}
/// Advance the coordinate index \c i by \c n in this range
/// \param[in,out] i The coordinate index to be advanced
/// \param n The distance to advance \c i
/// \throw TiledArray::Exception When the rank of i is not equal to
/// the rank of this range
/// \throw TiledArray::Exception When \c i or \c i+n is outside this range
void advance(index& i, std::ptrdiff_t n) const {
TA_ASSERT(includes(i));
const size_type o = ordinal(i) + n;
TA_ASSERT(includes(o));
i = idx(o);
}
/// Compute the distance between the coordinate indices \c first and \c last
/// \param first The starting position in the range
/// \param last The ending position in the range
/// \return The difference between first and last, in terms of range positions
/// \throw TiledArray::Exception When the size of \c first or \c last
/// is not equal to the rank of this range
/// \throw TiledArray::Exception When \c first or \c last is outside this range
std::ptrdiff_t distance_to(const index& first, const index& last) const {
TA_ASSERT(includes(first));
TA_ASSERT(includes(last));
return ordinal(last) - ordinal(first);
}
}; // class Range
inline Range& Range::operator *=(const Permutation& perm) {
TA_ASSERT(perm.dim() == rank_);
if(rank_ > 1ul) {
// Copy the lower and upper bound data into a temporary array
size_type* restrict const temp_lower = new size_type[rank_ << 1];
const size_type* restrict const temp_upper = temp_lower + rank_;
std::memcpy(temp_lower, data_, (sizeof(size_type) << 1) * rank_);
init_range_data(perm, temp_lower, temp_upper);
// Cleanup old memory.
delete[] temp_lower;
}
return *this;
}
/// Exchange the values of the give two ranges.
inline void swap(Range& r0, Range& r1) { // no throw
r0.swap(r1);
}
/// Create a permuted range
/// \param perm The permutation to be applied to the range
/// \param r The range to be permuted
/// \return A permuted copy of \c r.
inline Range operator*(const Permutation& perm, const Range& r) {
return Range(perm, r);
}
/// Range equality comparison
/// \param r1 The first range to be compared
/// \param r2 The second range to be compared
/// \return \c true when \c r1 represents the same range as \c r2, otherwise
/// \c false.
inline bool operator ==(const Range& r1, const Range& r2) {
return (r1.rank() == r2.rank()) && !std::memcmp(r1.lobound_data(), r2.lobound_data(),
r1.rank() * (2u * sizeof(Range::size_type)));
}
/// Range inequality comparison
/// \param r1 The first range to be compared
/// \param r2 The second range to be compared
/// \return \c true when \c r1 does not represent the same range as \c r2,
/// otherwise \c false.
inline bool operator !=(const Range& r1, const Range& r2) {
return (r1.rank() != r2.rank()) || std::memcmp(r1.lobound_data(), r2.lobound_data(),
r1.rank() * (2u * sizeof(Range::size_type)));
}
/// Range output operator
/// \param os The output stream that will be used to print \c r
/// \param r The range to be printed
/// \return A reference to the output stream
inline std::ostream& operator<<(std::ostream& os, const Range& r) {
os << "[ ";
detail::print_array(os, r.lobound_data(), r.rank());
os << ", ";
detail::print_array(os, r.upbound_data(), r.rank());
os << " )";
return os;
}
} // namespace TiledArray
#endif // TILEDARRAY_RANGE_H__INCLUDED
|