/usr/include/TiledArray/proc_grid.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | /*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* proc_grid.h
* Nov 6, 2013
*
*/
#ifndef TILEDARRAY_GRID_H__INCLUDED
#define TILEDARRAY_GRID_H__INCLUDED
#include <TiledArray/pmap/cyclic_pmap.h>
#include <TiledArray/math/eigen.h>
namespace TiledArray {
namespace detail {
/// A 2D processor grid
/// ProcGrid attempts to create a near optimal 2D grid of P processes for
/// an MxN grid of tiles. The size of the grid is optimized such that the
/// total communication time required for SUMMA and the number of unused
/// processes is minimized. The total communication time of SUMMA is given
/// by:
/// \f[
/// T = \frac{MK}{P_{\rm{row}}} \left(\alpha + \frac{mk}{\beta}\right)
/// \left((P/P_{\rm{row}}) - 1\right) + \frac{KN}{P/P_{\rm{row}}}
/// \left(\alpha + \frac{kn}{\beta}\right) \left(P_{\rm{row}} - 1\right)
/// \f]
/// where \f$P_{\rm{row}}\f$ is the number of process rows; \f$M\f$,
/// \f$N\f$, and \f$K\f$ are the number of tile rows and columns in a matrix
/// product with average tiles sizes of \f$m\f$, \f$n\f$, and \f$k\f$,
/// respectively; \f$P\f$ is the number or available processes; \f$\alpha\f$
/// is the message latency; and \f$\beta\f$ is the message data rate. If we
/// evaluate \f$dT/dP_{\rm{row}} = 0\f$ and assume that
/// \f$\alpha \approx 0\f$, the expression simplifies to:
/// \f[
/// Nn(2 P_{\rm{row}}^4 - P_{\rm{row}}^3) + Mm(P P_{\rm{row}} - P^2) = 0
/// \f]
/// where the positive, real root of \f$P_{\rm{row}}\f$ give the optimal
/// optimal communication time.
class ProcGrid {
public:
typedef uint_fast32_t size_type;
private:
World* world_; ///< The world where this process grid lives
size_type rows_; ///< Number of element rows
size_type cols_; ///< Number of element columns
size_type size_; ///< Number of elements
size_type proc_rows_; ///< Number of rows in the process grid
size_type proc_cols_; ///< Number of columns in the process grid
size_type proc_size_; ///< Number of processes in the process grid. This
///< may be less than the number of processes in world.
ProcessID rank_row_; ///< This process's row in the process grid
ProcessID rank_col_; ///< This process's column in the process grid
size_type local_rows_; ///< The number of local element rows
size_type local_cols_; ///< The number of local element columns
size_type local_size_; ///< Number of local elements
/// Compute the number of process rows that minimizes communication
/// This function computes the optimal number of process row such that the
/// communication time of a single SUMMA iteration is minimum.
/// \param nprocs The number of processes
/// \param Mm The number of row elements
/// \param Nn The number of column elements
/// \return The number of process rows that minimizes communication time
static size_type optimal_proc_row(const double nprocs, const double Mm,
const double Nn)
{
// Compute the initial guess for P_row. This is the optimal guess when
// Mm is equal to Nn, and the ideal solution.
double P_row_estimate = std::sqrt(nprocs);
// Here we want to find the positive, real root of the polynomial:
// Nn(2x^4 - x^3) + Mm(Px - 2P^2) = 0
// using a Newton-Raphson algorithm.
// Precompute some constants
const double PMm = nprocs * Mm;
const double two_P = nprocs + nprocs;
const unsigned int max_it = 21u;
unsigned int it = 0u;
double r = 0.0;
do {
// Precompute P_row squared
const double P_row2 = P_row_estimate * P_row_estimate;
const double NnP_row2 = Nn * P_row2;
// Compute the value of f(P_row_estimate) and df(P_row_estimate)
const double f = NnP_row2 * ( 2.0 * P_row2 - P_row_estimate)
+ PMm * ( P_row_estimate - two_P);
const double df = NnP_row2 * ( 8.0 * P_row_estimate - 3.0) + PMm;
// Compute a new guess for P_row
const double P_row_n1 = P_row_estimate - (f / df);
// Compute the residual for this iteration
r = std::abs(P_row_n1 - P_row_estimate);
// Update the guess
P_row_estimate = P_row_n1;
} while((r > 0.1) && ((++it) < max_it));
return P_row_estimate + 0.5;
}
/// Search for optimal values of x and y
/// This function will search for values of x and y such that minimize the
/// number of unused processes, subject to the constraint that
/// <tt>x*y <= nprocs</tt>. When the number of unused processes is equal,
/// the solution that is closest to the initial guess for x and y will be
/// used, which is also the solution with lower communication cost.
/// \param[in,out] x The initial guess for the number of rows
/// \param[in,out] y The initial guess for the number of columns
/// \param[in] nprocs The number of available processes
/// \param[in] min_x The minimum valid value for x
/// \param[in] max_x The maximum valid value for x
void minimize_unused_procs(size_type& x, size_type& y,
const size_type nprocs, const size_type min_x, const size_type max_x)
{
// Check for the quick exit
size_type unused = x * y;
if(unused == 0u)
return;
// Compute the range of values for x to be tested.
const size_type delta = std::max<size_type>(1ul, std::log2(nprocs));
const size_type optimal_x = x;
size_type diff = 0ul;
const size_type min_test_x = std::max<int_fast32_t>(min_x, int_fast32_t(x) - delta);
size_type test_x = std::min(x + delta, max_x);
for(; test_x >= min_test_x; --test_x) {
const size_type test_y = nprocs / test_x;
const size_type test_unused = nprocs - test_x * test_y;
const size_type test_diff = std::abs(long(optimal_x) - long(test_x));
if((test_unused < unused) || ((test_unused == unused) && (test_diff < diff))) {
x = test_x;
y = test_y;
unused = test_unused;
diff = test_diff;
}
}
}
/// Member variable initialization
/// This function initializes the member variables with with the optimal
/// sizes.
void init(const size_type rank, const size_type nprocs,
const std::size_t row_size, const std::size_t col_size)
{
// Check for the simple cases first ...
if(nprocs == 1u) { // Only one process
// Set process grid sizes
proc_rows_ = 1u;
proc_cols_ = 1u;
proc_size_ = 1u;
// Set this process rank
rank_row_ = 0;
rank_col_ = 0;
// Set local counts
local_rows_ = rows_;
local_cols_ = cols_;
local_size_ = size_;
} else if(size_ <= nprocs) { // Max one tile per process
// Set process grid sizes
proc_rows_ = rows_;
proc_cols_ = cols_;
proc_size_ = size_;
if(rank < proc_size_) {
// Set this process rank
rank_row_ = rank / proc_cols_;
rank_col_ = rank % proc_cols_;
// Set local counts
local_rows_ = 1u;
local_cols_ = 1u;
local_size_ = 1u;
}
} else { // The not so simple case
// Compute the limits for process rows
const size_type min_proc_rows =
std::max<size_type>(((nprocs + cols_ - 1ul) / cols_), 1ul);
const size_type max_proc_rows = std::min<size_type>(nprocs, rows_);
// Compute optimal the number of process rows and columns in terms of
// communication time.
proc_rows_ = std::max<size_type>(min_proc_rows,
std::min<size_type>(optimal_proc_row(nprocs, row_size, col_size),
max_proc_rows));
proc_cols_ = nprocs / proc_rows_;
if((proc_rows_ > min_proc_rows) && (proc_rows_ < max_proc_rows)) {
// Search for the values of proc_rows_ and proc_cols_ that minimizes
// the number of unused processes in the process grid.
minimize_unused_procs(proc_rows_, proc_cols_, nprocs,
min_proc_rows, max_proc_rows);
}
proc_size_ = proc_rows_ * proc_cols_;
if(rank < proc_size_) {
// Set this process rank
rank_row_ = rank / proc_cols_;
rank_col_ = rank % proc_cols_;
// Set local counts
local_rows_ = (rows_ / proc_rows_) + (size_type(rank_row_) < (rows_ % proc_rows_) ? 1u : 0u);
local_cols_ = (cols_ / proc_cols_) + (size_type(rank_col_) < (cols_ % proc_cols_) ? 1u : 0u);
local_size_ = local_rows_ * local_cols_;
}
}
}
public:
/// Default constructor
/// All sizes are initialized to zero.
ProcGrid() :
world_(NULL), rows_(0u), cols_(0u), size_(0u), proc_rows_(0u),
proc_cols_(0u), proc_size_(0u), rank_row_(0), rank_col_(0),
local_rows_(0u), local_cols_(0u), local_size_(0u)
{ }
/// Construct a process grid
// This constructor makes a rough estimate of the optimal process
// dimensions. The goal is for the ratios of proc_rows/proc_cols and
// rows/cols to be approximately equal.
/// \param world The world where the process grid will live
/// \param rows The number of tile rows
/// \param cols The number of tile columns
/// \param row_size The number of element rows
/// \param col_size The number of element columns
ProcGrid(World& world, const size_type rows, const size_type cols,
const std::size_t row_size, const std::size_t col_size) :
world_(&world), rows_(rows), cols_(cols), size_(rows_ * cols_),
proc_rows_(0ul), proc_cols_(0ul), proc_size_(0ul),
rank_row_(-1), rank_col_(-1),
local_rows_(0ul), local_cols_(0ul), local_size_(0ul)
{
// Check for non-zero sizes
TA_ASSERT(rows_ >= 1u);
TA_ASSERT(cols_ >= 1u);
TA_ASSERT(row_size >= 1ul);
TA_ASSERT(col_size >= 1ul);
init(world_->rank(), world_->size(), row_size, col_size);
}
#ifdef TILEDARRAY_ENABLE_TEST_PROC_GRID
// Note: The following function is here for testing purposes only. It
// has the same functionality as the default constructor above, except the
// rank and number of processes can be specified.
/// Construct a process grid
// This constructor makes a rough estimate of the optimal process
// dimensions. The goal is for the ratios of proc_rows/proc_cols and
// rows/cols to be approximately equal.
/// \param world The world where the process grid will live
/// \param test_rank Test rank
/// \param test_nprocs Test number of procs
/// \param rows The number of tile rows
/// \param cols The number of tile columns
/// \param row_size The number of element rows
/// \param col_size The number of element columns
ProcGrid(World& world, const size_type test_rank, size_type test_nprocs,
const size_type rows, const size_type cols,
const std::size_t row_size, const std::size_t col_size) :
world_(&world), rows_(rows), cols_(cols), size_(rows_ * cols_),
proc_rows_(0u), proc_cols_(0u), proc_size_(0u), rank_row_(-1),
rank_col_(-1), local_rows_(0u), local_cols_(0u), local_size_(0u)
{
// Check for non-zero sizes
TA_ASSERT(rows >= 1u);
TA_ASSERT(cols >= 1u);
TA_ASSERT(row_size >= 1u);
TA_ASSERT(col_size >= 1u);
TA_ASSERT(test_rank < test_nprocs);
init(test_rank, test_nprocs, row_size, col_size);
}
#endif // TILEDARRAY_ENABLE_TEST_PROC_GRID
/// Copy constructor
// This constructor makes a rough estimate of the optimal process
// dimensions. The goal is for the ratios of proc_rows/proc_cols and
// rows/cols to be approximately equal.
/// \param other The other process grid to be copied
ProcGrid(const ProcGrid& other) :
world_(other.world_), rows_(other.rows_), cols_(other.cols_),
size_(other.size_), proc_rows_(other.proc_rows_),
proc_cols_(other.proc_cols_), proc_size_(other.proc_size_),
rank_row_(other.rank_row_), rank_col_(other.rank_col_),
local_rows_(other.local_rows_), local_cols_(other.local_cols_),
local_size_(other.local_size_)
{ }
/// Copy assignment operator
/// \param other The other process grid to be copied
ProcGrid& operator=(const ProcGrid& other) {
world_ = other.world_;
rows_ = other.rows_;
cols_ = other.cols_;
size_ = other.size_;
proc_rows_ = other.proc_rows_;
proc_cols_ = other.proc_cols_;
proc_size_ = other.proc_size_;
rank_row_ = other.rank_row_;
rank_col_ = other.rank_col_;
local_rows_ = other.local_rows_;
local_cols_ = other.local_cols_;
local_size_ = other.local_size_;
return *this;
}
/// Element row count accessor
/// \return The number of element rows
size_type rows() const { return rows_; }
/// Element column count accessor
/// \return The number of element columns
size_type cols() const { return cols_; }
/// Element count accessor
/// \return The number of element
size_type size() const { return size_; }
/// Local element row count accessor
/// \return The number of element rows
size_type local_rows() const { return local_rows_; }
/// Local element column count accessor
/// \return The number of element columns
size_type local_cols() const { return local_cols_; }
/// Local element count accessor
/// \return The number of element
size_type local_size() const { return local_size_; }
/// Rank row accessor
/// \return The row of this process in the process grid
ProcessID rank_row() const { return rank_row_; }
/// Rank row accessor
/// \return The column of this process in the process grid
ProcessID rank_col() const { return rank_col_; }
/// Process row count accessor
/// \return The number of rows in the process grid
size_type proc_rows() const { return proc_rows_; }
/// Process column count accessor
/// \return The number of columns in the process grid
size_type proc_cols() const { return proc_cols_; }
/// Process grid size accessor
/// \return The number of processes included in the process grid (may be
/// less than the number of process in world).
size_type proc_size() const { return proc_size_; }
/// Construct a row group
/// \param did The distributed id for the result group
/// \return A \c Group object that includes all processes in \c rank_row
madness::Group make_row_group(const madness::DistributedID& did) const {
TA_ASSERT(world_);
madness::Group group;
if(local_size_ != 0u) {
// Construct a vector to hold the
std::vector<ProcessID> proc_list;
proc_list.reserve(proc_cols_);
// Populate the row process list
size_type p = rank_row_ * proc_cols_;
const size_type row_end = p + proc_cols_;
for(; p < row_end; ++p)
proc_list.push_back(p);
// Construct the group
group = madness::Group(*world_, proc_list, did);
}
return group;
}
/// Construct a column group
/// \param did The distributed id for the result group
/// \return A \c Group object that includes all processes in \c rank_col
madness::Group make_col_group(const madness::DistributedID& did) const {
TA_ASSERT(world_);
madness::Group group;
if(local_size_ != 0u) {
// Generate the list of processes in rank_row
std::vector<ProcessID> proc_list;
proc_list.reserve(proc_rows_);
// Populate the column process list
for(size_type p = rank_col_; p < proc_size_; p += proc_cols_)
proc_list.push_back(p);
// Construct the group
if(proc_list.size() != 0)
group = madness::Group(*world_, proc_list, did);
}
return group;
}
/// Map a row to the process in this process's column
/// \param row The row to be mapped
/// \return The process the corresponds to the process coordinate \c (row,rank_col)
ProcessID map_row(const size_type row) const {
TA_ASSERT(row < proc_rows_);
return rank_col_ + row * proc_cols_;
}
/// Map a column to the process in this process's row
/// \param col The column to be mapped
/// \return The process the corresponds to the process coordinate \c (rank_row,col)
ProcessID map_col(const size_type col) const {
TA_ASSERT(col < proc_cols_);
return rank_row_ * proc_cols_ + col;
}
/// Construct a cyclic process
/// Construct a cyclic process map with the same phase as the process grid.
/// \return Cyclic process map
std::shared_ptr<Pmap> make_pmap() const {
TA_ASSERT(world_);
return std::shared_ptr<Pmap>(new CyclicPmap(*world_, rows_, cols_, proc_rows_, proc_cols_));
}
/// Construct column phased a cyclic process
/// Construct a cyclic process map where the column phase of the process
/// matches that of this process grid.
/// \param rows The number of rows in the process map
/// \return Cyclic process map with matching column phase
std::shared_ptr<Pmap> make_col_phase_pmap(const size_type rows) const {
TA_ASSERT(world_);
return std::shared_ptr<Pmap>(new CyclicPmap(*world_, rows, cols_, proc_rows_, proc_cols_));
}
/// Construct row phased a cyclic process
/// Construct a cyclic process map where the column phase of the process
/// matches that of this process grid.
/// \param cols The number of columns in the process map
/// \return Cyclic process map with matching column phase
std::shared_ptr<Pmap> make_row_phase_pmap(const size_type cols) const {
TA_ASSERT(world_);
return std::shared_ptr<Pmap>(new CyclicPmap(*world_, rows_, cols, proc_rows_, proc_cols_));
}
}; // class Grid
} // namespace detail
} // namespace TiledArray
#endif // TILEDARRAY_GRID_H__INCLUDED
|