/usr/include/TiledArray/math/outer.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | /*
* This file is a part of TiledArray.
* Copyright (C) 2014 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* outer.h
* Feb 16, 2014
*
*/
#ifndef TILEDARRAY_MATH_OUTER_H__INCLUDED
#define TILEDARRAY_MATH_OUTER_H__INCLUDED
#include <TiledArray/math/vector_op.h>
#include <TiledArray/utility.h>
namespace TiledArray {
namespace math {
/// Outer algorithm automatic loop unwinding
/// \tparam N The number of steps to unwind
template <std::size_t N>
class OuterVectorOpUnwind;
template <>
class OuterVectorOpUnwind<0> {
public:
static const std::size_t offset = TILEDARRAY_LOOP_UNWIND - 1;
template <typename X, typename Y, typename Result, typename Op>
static TILEDARRAY_FORCE_INLINE void
outer(const X* const x_block, const Y* const y_block,
Result* const result, const std::size_t /*stride*/, const Op& op)
{
TILEDARRAY_ALIGNED_STORAGE Result result_block[TILEDARRAY_LOOP_UNWIND];
copy_block(result_block, result);
const X x = x_block[offset];
for_each_block([x,&op] (Result& r, const Y y) { op(r, x, y); },
result_block, y_block);
copy_block(result, result_block);
}
template <typename X, typename Y, typename Init, typename Result, typename Op>
static TILEDARRAY_FORCE_INLINE void
fill(const X* const x_block, const Y* const y_block,
const Init* const init, Result* const result,
const std::size_t /*stride*/, const Op& op)
{
TILEDARRAY_ALIGNED_STORAGE Init init_block[TILEDARRAY_LOOP_UNWIND];
copy_block(init_block, init);
const X x = x_block[offset];
for_each_block([x,&op] (Init& i, const Y y) { op(i, x, y); },
init_block, y_block);
copy_block(result, init_block);
}
template <typename X, typename Y, typename Result, typename Op>
static TILEDARRAY_FORCE_INLINE void
fill(const X* const x_block, const Y* const y_block,
Result* const result, const std::size_t /*stride*/, const Op& op)
{
TILEDARRAY_ALIGNED_STORAGE Result result_block[TILEDARRAY_LOOP_UNWIND];
const X x = x_block[offset];
for_each_block([x,&op] (Result& res, const Y y) { res = op(x, y); },
result_block, y_block);
copy_block(result, result_block);
}
}; // class OuterVectorOpUnwind<0>
template <std::size_t N>
class OuterVectorOpUnwind : public OuterVectorOpUnwind<N - 1> {
public:
typedef OuterVectorOpUnwind<N - 1> OuterVectorOpUnwindN1;
static const std::size_t offset = TILEDARRAY_LOOP_UNWIND - N - 1;
template <typename X, typename Y, typename Result, typename Op>
static TILEDARRAY_FORCE_INLINE void
outer(const X* const x_block, const Y* const y_block,
Result* const result, const std::size_t stride, const Op& op)
{
{
TILEDARRAY_ALIGNED_STORAGE Result result_block[TILEDARRAY_LOOP_UNWIND];
copy_block(result_block, result);
const X x = x_block[offset];
for_each_block([x,&op] (Result& r, const Y y) { op(r, x, y); },
result_block, y_block);
copy_block(result, result_block);
}
OuterVectorOpUnwindN1::outer(x_block, y_block, result + stride, stride, op);
}
template <typename X, typename Y, typename Init, typename Result, typename Op>
static TILEDARRAY_FORCE_INLINE void
fill(const X* const x_block, const Y* const y_block,
const Init* const init, Result* const result,
const std::size_t stride, const Op& op)
{
{
TILEDARRAY_ALIGNED_STORAGE Init init_block[TILEDARRAY_LOOP_UNWIND];
copy_block(init_block, init);
const X x = x_block[offset];
for_each_block([x,&op] (Init& i, const Y y) { op(i, x, y); },
init_block, y_block);
copy_block(result, init_block);
}
OuterVectorOpUnwindN1::fill(x_block, y_block, init + stride, result + stride, stride, op);
}
template <typename X, typename Y, typename Result, typename Op>
static TILEDARRAY_FORCE_INLINE void
fill(const X* const x_block, const Y* const y_block,
Result* restrict const result, const std::size_t stride, const Op& op)
{
{
TILEDARRAY_ALIGNED_STORAGE Result result_block[TILEDARRAY_LOOP_UNWIND];
const X x = x_block[offset];
for_each_block([x,&op] (Result& res, const Y y) { res = op(x, y); },
result_block, y_block);
copy_block(result, result_block);
}
OuterVectorOpUnwindN1::fill(x_block, y_block, result + stride, stride, op);
}
}; // class OuterVectorOpUnwind
// Convenience typedef
typedef OuterVectorOpUnwind<TILEDARRAY_LOOP_UNWIND - 1> OuterVectorOpUnwindN;
/// Compute and store outer of \c x and \c y in \c a
/// <tt>a[i][j] = op(x[i], y[j])</tt>.
/// \tparam X The left-hand vector element type
/// \tparam Y The right-hand vector element type
/// \tparam A The a matrix element type
/// \param[in] m The size of the left-hand vector
/// \param[in] n The size of the right-hand vector
/// \param[in] x The left-hand vector
/// \param[in] y The right-hand vector
/// \param[out] a The result matrix of size \c m*n
/// \param[in] op The operation that will compute the outer product elements
template <typename X, typename Y, typename A, typename Op>
void outer_fill(const std::size_t m, const std::size_t n,
const X* const x, const Y* const y, A* a, const Op& op)
{
std::size_t i = 0ul;
// Compute block iteration limit
const std::size_t mx = m & index_mask::value; // = m - m % TILEDARRAY_LOOP_UNWIND
const std::size_t nx = n & index_mask::value; // = n - n % TILEDARRAY_LOOP_UNWIND
const std::size_t a_block_stride = n * TILEDARRAY_LOOP_UNWIND;
for(; i < mx; i += TILEDARRAY_LOOP_UNWIND, a += a_block_stride) {
// Load x block
TILEDARRAY_ALIGNED_STORAGE X x_block[TILEDARRAY_LOOP_UNWIND];
copy_block(x_block, x + i);
std::size_t j = 0ul;
for(; j < nx; j += TILEDARRAY_LOOP_UNWIND) {
// Load y block
TILEDARRAY_ALIGNED_STORAGE Y y_block[TILEDARRAY_LOOP_UNWIND];
copy_block(y_block, y + j);
// Compute and store a block
OuterVectorOpUnwindN::fill(x_block, y_block, a + j, n, op);
}
for(; j < n; ++j) {
// Load y block
const Y y_j = y[j];
// Compute a block
TILEDARRAY_ALIGNED_STORAGE A a_block[TILEDARRAY_LOOP_UNWIND];
const auto bind_first_op = [y_j,&op] (A& a_ij, const X x_i) { a_ij = op(x_i, y_j); };
for_each_block(bind_first_op, a_block, x_block);
// Store a block
scatter_block(a + j, n, a_block);
}
}
for(; i < m; ++i, a += n) {
const X x_i = x[i];
vector_op([x_i,&op] (const Y y_j) -> decltype(op(x_i, y_j))
{ return op(x_i, y_j); }, n, a, y);
}
}
/// Compute the outer of \c x and \c y to modify \c a
/// Compute <tt>op(a[i][j], x[i], y[j])</tt> for each \c i and \c j pair,
/// where \c a[i][j] is modified by \c op.
/// \tparam X The left hand vector element type
/// \tparam Y The right-hand vector element type
/// \tparam A The a matrix element type
/// \tparam Op The operation that will compute outer product elements
/// \param[in] m The size of the left-hand vector
/// \param[in] n The size of the right-hand vector
/// \param[in] x The left-hand vector
/// \param[in] y The right-hand vector
/// \param[in,out] a The result matrix of size \c m*n
/// \param[in] op The operation used to generate the result
template <typename X, typename Y, typename A, typename Op>
void outer(const std::size_t m, const std::size_t n,
const X* const x, const Y* const y, A* a, const Op& op)
{
std::size_t i = 0ul;
// Compute block iteration limit
const std::size_t mx = m & index_mask::value; // = m - m % TILEDARRAY_LOOP_UNWIND
const std::size_t nx = n & index_mask::value; // = n - n % TILEDARRAY_LOOP_UNWIND
const std::size_t a_block_stride = n * TILEDARRAY_LOOP_UNWIND;
for(; i < mx; i += TILEDARRAY_LOOP_UNWIND, a += a_block_stride) {
// Load x block
TILEDARRAY_ALIGNED_STORAGE X x_block[TILEDARRAY_LOOP_UNWIND];
copy_block(x_block, x + i);
std::size_t j = 0ul;
for(; j < nx; j += TILEDARRAY_LOOP_UNWIND) {
// Load y block
TILEDARRAY_ALIGNED_STORAGE Y y_block[TILEDARRAY_LOOP_UNWIND];
copy_block(y_block, y + j);
// Load, compute, and store a block
OuterVectorOpUnwindN::outer(x_block, y_block, a + j, n, op);
}
for(; j < n; ++j) {
// Load a block
A* const a_ij = a + j;
TILEDARRAY_ALIGNED_STORAGE A a_block[TILEDARRAY_LOOP_UNWIND];
gather_block(a_block, a_ij, n);
// Load y block
const Y y_j = y[j];
// Compute a block
for_each_block([y_j,&op] (A& a_ij, const X x_i) -> decltype(op(a_ij, x_i, y_j))
{ return op(a_ij, x_i, y_j); },
a_block, x_block);
// Store a block
scatter_block(a_ij, n, a_block);
}
}
for(; i < m; ++i, a += n) {
const X x_i = x[i];
inplace_vector_op([x_i,&op] (A& a_ij, const Y y_j) -> decltype(op(a_ij, x_i, y_j))
{ return op(a_ij, x_i, y_j); },
n, a, y);
}
}
/// Compute the outer of \c x, \c y, and \c a, and store the result in \c b
/// Store a modified copy of \c a in \c b, where modified elements are
/// generated using the following algorithm:
/// \code
/// A temp = a[i][j];
/// op(temp, x[i], y[j]);
/// b[i][j] = temp;
/// \endcode
/// for each unique pair of \c i and \c j.
/// \tparam X The left hand vector element type
/// \tparam Y The right-hand vector element type
/// \tparam A The a matrix element type
/// \tparam B The b matrix element type
/// \tparam Op The operation that will compute outer product elements
/// \param[in] m The size of the left-hand vector
/// \param[in] n The size of the right-hand vector
/// \param[in] x The left-hand vector
/// \param[in] y The right-hand vector
/// \param[in] a The input matrix of size \c m*n
/// \param[out] b The output matrix of size \c m*n
/// \param[in] op The operation that will compute the outer product elements
template <typename X, typename Y, typename A, typename B, typename Op>
void outer_fill(const std::size_t m, const std::size_t n,
const X* restrict const x, const Y* restrict const y,
const A* restrict a, B* restrict b, const Op& op)
{
std::size_t i = 0ul;
// Compute block iteration limit
const std::size_t mx = m & index_mask::value; // = m - m % TILEDARRAY_LOOP_UNWIND
const std::size_t nx = n & index_mask::value; // = n - n % TILEDARRAY_LOOP_UNWIND
const std::size_t a_block_stride = n * TILEDARRAY_LOOP_UNWIND;
for(; i < mx; i += TILEDARRAY_LOOP_UNWIND, a += a_block_stride, b += a_block_stride) {
// Load x block
TILEDARRAY_ALIGNED_STORAGE X x_block[TILEDARRAY_LOOP_UNWIND];
copy_block(x_block, x + i);
std::size_t j = 0ul;
for(; j < nx; j += TILEDARRAY_LOOP_UNWIND) {
// Load y block
TILEDARRAY_ALIGNED_STORAGE Y y_block[TILEDARRAY_LOOP_UNWIND];
copy_block(y_block, y + j);
// Load, compute, and store a block
OuterVectorOpUnwindN::fill(x_block, y_block, a + j, b + j, n, op);
}
for(; j < n; ++j) {
// Load a block
TILEDARRAY_ALIGNED_STORAGE A a_block[TILEDARRAY_LOOP_UNWIND];
gather_block(a_block, a + j, n);
// Load y block
const Y y_j = y[j];
// Compute a block
for_each_block([y_j,&op] (A& a_ij, const X x_i) -> decltype(op(a_ij, x_i, y_j))
{ return op(a_ij, x_i, y_j); },
a_block, x_block);
// Store a block
scatter_block(b + j, n, a_block);
}
}
for(; i < m; ++i, a += n, b += n) {
// Load x block
const X x_i = x[i];
std::size_t j = 0ul;
for(; j < nx; j += TILEDARRAY_LOOP_UNWIND) {
// Load a block
TILEDARRAY_ALIGNED_STORAGE A a_block[TILEDARRAY_LOOP_UNWIND];
copy_block(a_block, a + j);
// Load y block
TILEDARRAY_ALIGNED_STORAGE Y y_block[TILEDARRAY_LOOP_UNWIND];
copy_block(y_block, y + j);
// Compute outer block
for_each_block([x_i,&op] (A& a_ij, const Y y_j) -> decltype(op(a_ij, x_i, y_j))
{ return op(a_ij, x_i, y_j); },
a_block, y_block);
// Store a block
copy_block(b + j, a_block);
}
for(; j < n; ++j) {
A a_ij = a[j];
const Y y_j = y[j];
op(a_ij, x_i, y_j);
b[j] = a_ij;
}
}
}
} // namespace math
} // namespace TiledArray
#endif // TILEDARRAY_MATH_OUTER_H__INCLUDED
|