/usr/include/TiledArray/expressions/expr.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 | /*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* expr.h
* Apr 1, 2014
*
*/
#ifndef TILEDARRAY_EXPRESSIONS_EXPR_H__INCLUDED
#define TILEDARRAY_EXPRESSIONS_EXPR_H__INCLUDED
#include <TiledArray/expressions/expr_engine.h>
#include <TiledArray/reduce_task.h>
#include <TiledArray/tile_op/unary_reduction.h>
#include <TiledArray/tile_op/binary_reduction.h>
#include <TiledArray/tile_op/reduce_wrapper.h>
#include <TiledArray/tile_op/shift.h>
#include <TiledArray/tile_op/unary_wrapper.h>
namespace TiledArray {
namespace expressions {
// Forward declaration
template <typename> struct ExprTrait;
template <typename, bool> class TsrExpr;
template <typename, bool> class BlkTsrExpr;
template <typename> struct is_aliased;
template <typename Engine>
struct EngineParamOverride {
typedef typename EngineTrait<Engine>::policy policy; ///< The result policy type
typedef typename EngineTrait<Engine>::shape_type shape_type; ///< Tensor shape type
typedef typename EngineTrait<Engine>::pmap_interface pmap_interface; ///< Process map interface type
World* world;
std::shared_ptr<pmap_interface> pmap;
const shape_type* shape;
};
/// \brief type trait checks if T has array() member
/// Useful to determine if an Expr is a TsrExpr or a related type
template<class E>
class has_array {
/// true case
template<class U>
static auto __test(U* p) -> decltype(p->array(), std::true_type());
/// false case
template<class>
static std::false_type __test(...);
public:
static constexpr const bool value = std::is_same<std::true_type, decltype(__test<E>(0))>::value;
};
/// Base class for expression evaluation
/// \tparam Derived The derived class type
template <typename Derived>
class Expr {
public:
typedef Expr<Derived> Expr_; ///< This class type
typedef Derived derived_type; ///< The derived object type
typedef typename ExprTrait<Derived>::engine_type
engine_type; ///< Expression engine type
private:
template <typename D>
friend class ExprEngine;
typedef EngineParamOverride<engine_type>
override_type; ///< Expression engine parameters
std::shared_ptr<override_type> override_ptr_;
public:
/// \param shape the shape to use for the result
/// \internal \c shape is taken by const reference, but converted to a
/// pointer; passing by const ref ensures lifetime management for temporary
/// shapes
Expr<Derived>& set_shape(typename override_type::shape_type const& shape) {
if (override_ptr_ != nullptr) {
override_ptr_->shape = &shape;
} else {
override_ptr_ = std::make_shared<override_type>();
override_ptr_->shape = &shape;
}
return derived();
}
/// \param world the World object to use for the result
Expr<Derived> &set_world(World& world) {
if(override_ptr_ != nullptr){
override_ptr_->world = &world;
} else {
override_ptr_ = std::make_shared<override_type>();
override_ptr_->world = &world;
}
return derived();
}
/// \param pmap the Pmap object to use for the result
Expr<Derived>& set_pmap(
const std::shared_ptr<typename override_type::pmap_interface>
pmap) {
if (override_ptr_) {
override_ptr_->pmap = pmap;
} else {
override_ptr_ = std::make_shared<override_type>();
override_ptr_->pmap = pmap;
}
return derived();
}
private:
/// Task function used to evaluate lazy tiles
/// \tparam R The result type
/// \tparam T The lazy tile type
/// \param tile The lazy tile
/// \return The evaluated tile
template <typename R, typename T>
static typename TiledArray::eval_trait<T>::type eval_tile(const T& tile) {
return tile;
}
/// Task function used to mutate result tiles
/// \tparam R The result type
/// \tparam T The lazy tile type
/// \tparam Op Tile operation type
/// \param tile The lazy tile
/// \return The evaluated tile
/// \param op The tile mutating operation
template <typename R, typename T, typename Op>
static R eval_tile(T& tile, const std::shared_ptr<Op>& op) {
return (*op)(tile);
}
/// Set an array tile with a lazy tile
/// Spawn a task to evaluate a lazy tile and set the \a array tile at
/// \c index with the result.
/// \tparam A The array type
/// \tparam I The index type
/// \tparam T The lazy tile type
/// \param array The result array
/// \param index The tile index
/// \param tile The lazy tile
template <typename A, typename I, typename T>
typename std::enable_if<is_lazy_tile<T>::value>::type
set_tile(A& array, const I index, const Future<T>& tile) const {
array.set(index, array.world().taskq.add(
& Expr_::template eval_tile<typename A::value_type, T>, tile));
}
/// Set the \c array tile at \c index with \c tile
/// \tparam A The array type
/// \tparam I The index type
/// \tparam T The lazy tile type
/// \param array The result array
/// \param index The tile index
/// \param tile The tile
template <typename A, typename I, typename T>
typename std::enable_if<! is_lazy_tile<T>::value>::type
set_tile(A& array, const I index, const Future<T>& tile) const {
array.set(index, tile);
}
/// Set an array tile with a lazy tile
/// Spawn a task to evaluate a lazy tile and set the \a array tile at
/// \c index with the result.
/// \tparam A The array type
/// \tparam I The index type
/// \tparam T The lazy tile type
/// \tparam Op Tile operation type
/// \param array The result array
/// \param index The tile index
/// \param tile The lazy tile
/// \param op The tile mutating operation
template <typename A, typename I, typename T, typename Op>
void set_tile(A& array, const I index, const Future<T>& tile,
const std::shared_ptr<Op>& op) const
{
array.set(index, array.world().taskq.add(
& Expr_::template eval_tile<typename A::value_type, T, Op>, tile, op));
}
public:
// Compiler generated functions
Expr() = default;
Expr(const Expr_&) = default;
Expr(Expr_&&) = default;
~Expr() = default;
Expr_& operator=(const Expr_&) = delete;
Expr_& operator=(Expr_&&) = delete;
/// Cast this object to it's derived type
derived_type& derived() { return *static_cast<derived_type*>(this); }
/// Cast this object to it's derived type
const derived_type& derived() const { return *static_cast<const derived_type*>(this); }
/// Evaluate this object and assign it to \c tsr
/// This expression is evaluated in parallel in distributed environments,
/// where the content of \c tsr will be replaced by the results of the
/// evaluated tensor expression.
/// \tparam A The array type
/// \tparam Alias Tile alias flag
/// \param tsr The tensor to be assigned
template <typename A, bool Alias>
void eval_to(TsrExpr<A, Alias>& tsr) const {
static_assert(! is_lazy_tile<typename A::value_type>::value,
"Assignment to an array of lazy tiles is not supported.");
// Get the target world
// 1. result's world is assigned, use it
// 2. if this expression's world was assigned by set_world(), use it
// 3. otherwise revert to the TA default for the MADNESS world
const auto has_set_world = override_ptr_ && override_ptr_->world;
World& world = (tsr.array().is_initialized() ?
tsr.array().world() :
(has_set_world ? *override_ptr_->world : TiledArray::get_default_world()));
// Get the output process map.
// If result's pmap is assigned use it as the initial guess
// it will be assigned in engine.init
std::shared_ptr<typename TsrExpr<A, Alias>::array_type::pmap_interface> pmap;
if(tsr.array().is_initialized())
pmap = tsr.array().pmap();
// Get result variable list.
VariableList target_vars(tsr.vars());
// Construct the expression engine
engine_type engine(derived());
engine.init(world, pmap, target_vars);
// Create the distributed evaluator from this expression
typename engine_type::dist_eval_type dist_eval = engine.make_dist_eval();
dist_eval.eval();
// Create the result array
A result(dist_eval.world(), dist_eval.trange(),
dist_eval.shape(), dist_eval.pmap());
// Move the data from dist_eval into the result array. There is no
// communication in this step.
for(const auto index : *dist_eval.pmap()) {
if(! dist_eval.is_zero(index))
set_tile(result, index, dist_eval.get(index));
}
// Wait for child expressions of dist_eval
dist_eval.wait();
// Swap the new array with the result array object.
result.swap(tsr.array());
}
/// Evaluate this object and assign it to \c tsr
/// This expression is evaluated in parallel in distributed environments,
/// where the content of \c tsr will be replace by the results of the
/// evaluated tensor expression.
/// \tparam A The array type
/// \tparam Alias Tile alias flag
/// \param tsr The tensor to be assigned
template <typename A, bool Alias>
void eval_to(BlkTsrExpr<A, Alias>& tsr) const {
typedef TiledArray::Shift<typename EngineTrait<engine_type>::eval_type,
EngineTrait<engine_type>::consumable> shift_op_type;
typedef TiledArray::detail::UnaryWrapper<shift_op_type> op_type;
static_assert(! is_lazy_tile<typename A::value_type>::value,
"Assignment to an array of lazy tiles is not supported.");
#ifndef NDEBUG
// Check that the array has been initialized.
if(! tsr.array().is_initialized()) {
if(World::get_default().rank() == 0) {
TA_USER_ERROR_MESSAGE( \
"Assignment to an uninitialized array sub-block is not supported.");
}
TA_EXCEPTION("Assignment to an uninitialized array sub-block is not supported.");
}
// Note: Unfortunately we cannot check that the array tiles have been
// set even though this is a requirement.
#endif // NDEBUG
// Get the target world.
World& world = tsr.array().world();
// Get the output process map.
std::shared_ptr<typename BlkTsrExpr<A, Alias>::array_type::pmap_interface> pmap;
// Get result variable list.
VariableList target_vars(tsr.vars());
// Construct the expression engine
engine_type engine(derived());
engine.init(world, pmap, target_vars);
// Create the distributed evaluator from this expression
typename engine_type::dist_eval_type dist_eval = engine.make_dist_eval();
dist_eval.eval();
// Create the result array
A result(world, tsr.array().trange(),
tsr.array().shape().update_block(tsr.lower_bound(), tsr.upper_bound(),
dist_eval.shape()), tsr.array().pmap());
// NOTE: The tiles from the original array and the sub-block are copied
// in two separate steps because the two tensors have different data
// distribution.
// Copy tiles from the original array to the result array that are not
// included in the sub-block assignment. There is no communication in
// this step.
const BlockRange blk_range(tsr.array().trange().tiles_range(),
tsr.lower_bound(), tsr.upper_bound());
for(const auto index : *tsr.array().pmap()) {
if(! tsr.array().is_zero(index)) {
if(! blk_range.includes(tsr.array().trange().tiles_range().idx(index)))
result.set(index, tsr.array().find(index));
}
}
// Move the data from dist_eval into the sub-block of result array.
// This step may involve communication when the tiles are moved from the
// sub-block distribution to the array distribution.
{
const std::vector<long> shift =
tsr.array().trange().make_tile_range(tsr.lower_bound()).lobound();
std::shared_ptr<op_type> shift_op =
std::make_shared<op_type>(shift_op_type(shift));
for(const auto index : *dist_eval.pmap()) {
if(! dist_eval.is_zero(index))
set_tile(result, blk_range.ordinal(index), dist_eval.get(index), shift_op);
}
}
// Wait for child expressions of dist_eval
dist_eval.wait();
// Swap the new array with the result array object.
result.swap(tsr.array());
}
/// Expression print
/// \param os The output stream
/// \param target_vars The target variable list for this expression
void print(ExprOStream& os, const VariableList& target_vars) const {
// Construct the expression engine
engine_type engine(derived());
engine.init_vars(target_vars);
engine.init_struct(target_vars);
engine.print(os, target_vars);
}
private:
struct ExpressionReduceTag { };
template <typename D, typename Enabler = void>
struct default_world_helper {
default_world_helper(const D&) {}
World& get() const { return TiledArray::get_default_world(); }
};
template <typename D>
struct default_world_helper<
D, typename std::enable_if<has_array<D>::value>::type> {
default_world_helper(const D& d) : derived_(d) {}
World& get() const { return derived_.array().world(); }
const D& derived_;
};
World& default_world() const {
return default_world_helper<Derived>(this->derived()).get();
}
public:
template <typename Op>
Future<typename Op::result_type>
reduce(const Op& op, World& world) const {
// Typedefs
typedef madness::TaggedKey<madness::uniqueidT, ExpressionReduceTag> key_type;
typedef TiledArray::math::UnaryReduceWrapper<typename engine_type::value_type,
Op> reduction_op_type;
// Construct the expression engine
engine_type engine(derived());
engine.init(world, std::shared_ptr<typename engine_type::pmap_interface>(),
VariableList());
// Create the distributed evaluator from this expression
typename engine_type::dist_eval_type dist_eval = engine.make_dist_eval();
dist_eval.eval();
// Create a local reduction task
reduction_op_type wrapped_op(op);
TiledArray::detail::ReduceTask<reduction_op_type> reduce_task(world, wrapped_op);
// Move the data from dist_eval into the local reduction task
typename engine_type::dist_eval_type::pmap_interface::const_iterator it =
dist_eval.pmap()->begin();
const typename engine_type::dist_eval_type::pmap_interface::const_iterator end =
dist_eval.pmap()->end();
for(; it != end; ++it)
if(! dist_eval.is_zero(*it))
reduce_task.add(dist_eval.get(*it));
// All reduce the result of the expression
return world.gop.all_reduce(key_type(dist_eval.id()), reduce_task.submit(), op);
}
template <typename Op>
Future<typename Op::result_type>
reduce(const Op& op) const {
return reduce(op, default_world());
}
template <typename D, typename Op>
Future<typename Op::result_type>
reduce(const Expr<D>& right_expr, const Op& op,
World& world) const
{
static_assert(is_aliased<D>::value,
"no_alias() expressions are not allowed on the right-hand side of "
"the assignment operator.");
// Typedefs
typedef madness::TaggedKey<madness::uniqueidT, ExpressionReduceTag> key_type;
typedef TiledArray::math::BinaryReduceWrapper<typename engine_type::value_type,
typename D::engine_type::value_type, Op> reduction_op_type;
// Evaluate this expression
engine_type left_engine(derived());
left_engine.init(world, std::shared_ptr<typename engine_type::pmap_interface>(),
VariableList());
// Create the distributed evaluator for this expression
typename engine_type::dist_eval_type left_dist_eval =
left_engine.make_dist_eval();
left_dist_eval.eval();
// Evaluate the right-hand expression
typename D::engine_type right_engine(right_expr.derived());
right_engine.init(world, left_engine.pmap(), left_engine.vars());
// Create the distributed evaluator for the right-hand expression
typename D::engine_type::dist_eval_type right_dist_eval =
right_engine.make_dist_eval();
right_dist_eval.eval();
#ifndef NDEBUG
if(left_dist_eval.trange() != right_dist_eval.trange()) {
if(World::get_default().rank() == 0) {
TA_USER_ERROR_MESSAGE( \
"The TiledRanges of the left- and right-hand arguments the binary reduction are not equal:" \
<< "\n left = " << left_dist_eval.trange() \
<< "\n right = " << right_dist_eval.trange() );
}
TA_EXCEPTION("The TiledRange objects of a binary expression are not equal.");
}
#endif // NDEBUG
// Create a local reduction task
reduction_op_type wrapped_op(op);
TiledArray::detail::ReducePairTask<reduction_op_type>
local_reduce_task(world, wrapped_op);
// Move the data from dist_eval into the local reduction task
typename engine_type::dist_eval_type::pmap_interface::const_iterator it =
left_dist_eval.pmap()->begin();
const typename engine_type::dist_eval_type::pmap_interface::const_iterator end =
left_dist_eval.pmap()->end();
for(; it != end; ++it) {
const typename engine_type::size_type index = *it;
const bool left_not_zero = !left_dist_eval.is_zero(index);
const bool right_not_zero = !right_dist_eval.is_zero(index);
if(left_not_zero && right_not_zero) {
local_reduce_task.add(left_dist_eval.get(index), right_dist_eval.get(index));
} else {
if(left_not_zero) left_dist_eval.get(index);
if(right_not_zero) right_dist_eval.get(index);
}
}
return world.gop.all_reduce(key_type(left_dist_eval.id()),
local_reduce_task.submit(), op);
}
template <typename D, typename Op>
Future<typename Op::result_type>
reduce(const Expr<D>& right_expr, const Op& op) const {
return reduce(right_expr, op, default_world());
}
Future<typename TiledArray::TraceReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
trace(World& world) const {
typedef typename EngineTrait<engine_type>::eval_type value_type;
return reduce(TiledArray::TraceReduction<value_type>(), world);
}
Future<typename TiledArray::TraceReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
trace() const {
return trace(default_world());
}
Future<typename TiledArray::SumReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
sum(World& world) const {
typedef typename EngineTrait<engine_type>::eval_type value_type;
return reduce(TiledArray::SumReduction<value_type>(), world);
}
Future<typename TiledArray::SumReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
sum() const {
return sum(default_world());
}
Future<typename TiledArray::ProductReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
product(World& world) const {
typedef typename EngineTrait<engine_type>::eval_type value_type;
return reduce(TiledArray::ProductReduction<value_type>(), world);
}
Future<typename TiledArray::ProductReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
product() const {
return product(default_world());
}
Future<typename TiledArray::SquaredNormReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
squared_norm(World& world) const {
typedef typename EngineTrait<engine_type>::eval_type value_type;
return reduce(TiledArray::SquaredNormReduction<value_type>(),
world);
}
Future<typename TiledArray::SquaredNormReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
squared_norm() const {
return squared_norm(default_world());
}
private:
template <typename T>
static T sqrt(const T t) { return std::sqrt(t); }
public:
Future<typename TiledArray::SquaredNormReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
norm(World& world) const {
return world.taskq.add(Expr_::template sqrt<
typename TiledArray::SquaredNormReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>,
squared_norm(world));
}
Future<typename TiledArray::SquaredNormReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
norm() const {
return norm(default_world());
}
Future<typename TiledArray::MinReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
min(World& world) const {
typedef typename EngineTrait<engine_type>::eval_type value_type;
return reduce(TiledArray::MinReduction<value_type>(), world);
}
Future<typename TiledArray::MinReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
min() const {
return min(default_world());
}
Future<typename TiledArray::MaxReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
max(World& world) const {
typedef typename EngineTrait<engine_type>::eval_type value_type;
return reduce(TiledArray::MaxReduction<value_type>(), world);
}
Future<typename TiledArray::MaxReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
max() const {
return max(default_world());
}
Future<typename TiledArray::AbsMinReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
abs_min(World& world) const {
typedef typename EngineTrait<engine_type>::eval_type value_type;
return reduce(TiledArray::AbsMinReduction<value_type>(), world);
}
Future<typename TiledArray::AbsMinReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
abs_min() const {
return abs_min(default_world());
}
Future<typename TiledArray::AbsMaxReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
abs_max(World& world) const {
typedef typename EngineTrait<engine_type>::eval_type value_type;
return reduce(TiledArray::AbsMaxReduction<value_type>(), world);
}
Future<typename TiledArray::AbsMaxReduction<
typename EngineTrait<engine_type>::eval_type>::result_type>
abs_max() const {
return abs_max(default_world());
}
template <typename D>
Future<typename TiledArray::DotReduction<
typename EngineTrait<engine_type>::eval_type,
typename EngineTrait<typename D::engine_type>::eval_type>::result_type>
dot(const Expr<D>& right_expr, World& world) const {
typedef typename EngineTrait<engine_type>::eval_type left_value_type;
typedef typename EngineTrait<typename D::engine_type>::eval_type right_value_type;
return reduce(right_expr, TiledArray::DotReduction<left_value_type,
right_value_type>(), world);
}
template <typename D>
Future<typename TiledArray::DotReduction<
typename EngineTrait<engine_type>::eval_type,
typename EngineTrait<typename D::engine_type>::eval_type>::result_type>
dot(const Expr<D>& right_expr) const {
return dot(right_expr, default_world());
}
}; // class Expr
} // namespace expressions
} // namespace TiledArray
#endif // TILEDARRAY_EXPRESSIONS_EXPR_H__INCLUDED
|