/usr/include/TiledArray/dist_array.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 | /*
* This file is a part of TiledArray.
* Copyright (C) 2013 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef TILEDARRAY_ARRAY_H__INCLUDED
#define TILEDARRAY_ARRAY_H__INCLUDED
#include <TiledArray/replicator.h>
#include <TiledArray/pmap/replicated_pmap.h>
//#include <TiledArray/tensor.h>
#include <TiledArray/policies/dense_policy.h>
#include <TiledArray/array_impl.h>
#include <TiledArray/conversions/truncate.h>
#include <TiledArray/conversions/clone.h>
namespace TiledArray {
// Forward declarations
template <typename, typename> class Tensor;
namespace expressions {
template <typename, bool> class TsrExpr;
} // namespace expressions
/// A (multidimensional) tiled array
/// DistArray is the local representation of a global object. This means that
/// the local array object will only contain a portion of the data. It may be
/// used to construct distributed tensor algebraic operations.
/// \tparam T The element type of for array tiles
/// \tparam Tile The tile type [ Default = \c Tensor<T> ]
template <typename Tile = Tensor<double, Eigen::aligned_allocator<double> >,
typename Policy = DensePolicy>
class DistArray {
public:
typedef DistArray<Tile, Policy> DistArray_; ///< This object's type
typedef TiledArray::detail::ArrayImpl<Tile, Policy> impl_type;
typedef typename detail::numeric_type<Tile>::type element_type; ///< The tile element type
typedef typename impl_type::trange_type trange_type; ///< Tile range type
typedef typename impl_type::range_type range_type; ///< Range type for array tiling
typedef typename impl_type::shape_type shape_type; ///< Shape type for array tiling
typedef typename impl_type::range_type::index index; ///< Array coordinate index type
typedef typename impl_type::size_type size_type; ///< Size type
typedef typename impl_type::value_type value_type; ///< Tile type
typedef typename impl_type::eval_type eval_type; ///< The tile evaluation type
typedef typename impl_type::reference future; ///< Future of \c value_type
typedef typename impl_type::reference reference; ///< \c future type
typedef typename impl_type::const_reference const_reference; ///< \c future type
typedef typename impl_type::iterator iterator; ///< Local tile iterator
typedef typename impl_type::const_iterator const_iterator; ///< Local tile const iterator
typedef typename impl_type::pmap_interface pmap_interface; ///< Process map interface type
private:
std::shared_ptr<impl_type> pimpl_; ///< Array implementation pointer
static madness::AtomicInt cleanup_counter_;
/// Array deleter function
/// This function schedules a task for lazy cleanup. Array objects are
/// deleted only after the object has been deleted in all processes.
/// \param pimpl The implementation pointer to be deleted.
static void lazy_deleter(const impl_type* const pimpl) {
if(pimpl) {
if(madness::initialized()) {
World& world = pimpl->world();
const madness::uniqueidT id = pimpl->id();
cleanup_counter_++;
try {
world.gop.lazy_sync(id, [pimpl]() {
delete pimpl;
DistArray_::cleanup_counter_--;
});
}
catch(madness::MadnessException& e) {
fprintf(stderr, "!! ERROR TiledArray: madness::MadnessException thrown in Array::lazy_deleter().\n"
"%s\n"
"!! ERROR TiledArray: The exception has been absorbed.\n"
"!! ERROR TiledArray: rank=%i\n", e.what(), world.rank());
cleanup_counter_--;
delete pimpl;
}
catch(std::exception& e) {
fprintf(stderr, "!! ERROR TiledArray: std::exception thrown in Array::lazy_deleter().\n"
"%s\n"
"!! ERROR TiledArray: The exception has been absorbed.\n"
"!! ERROR TiledArray: rank=%i\n", e.what(), world.rank());
cleanup_counter_--;
delete pimpl;
}
catch(...) {
fprintf(stderr, "!! ERROR TiledArray: An unknown exception was thrown in Array::lazy_deleter().\n"
"!! ERROR TiledArray: The exception has been absorbed.\n"
"!! ERROR TiledArray: rank=%i\n", world.rank());
cleanup_counter_--;
delete pimpl;
}
} else {
delete pimpl;
}
}
}
/// Sparse array initialization
/// \param world The world where the array will live.
/// \param trange The tiled range object that will be used to set the array tiling.
/// \param shape The array shape that defines zero and non-zero tiles
/// \param pmap The tile index -> process map
static std::shared_ptr<impl_type>
init(World& world, const trange_type& trange, const shape_type& shape,
std::shared_ptr<pmap_interface> pmap)
{
// User level validation of input
if(! pmap) {
// Construct a default process map
pmap = Policy::default_pmap(world, trange.tiles_range().volume());
} else {
// Validate the process map
TA_USER_ASSERT(pmap->size() == trange.tiles_range().volume(),
"Array::Array() -- The size of the process map is not equal to the number of tiles in the TiledRange object.");
TA_USER_ASSERT(pmap->rank() == typename pmap_interface::size_type(world.rank()),
"Array::Array() -- The rank of the process map is not equal to that of the world object.");
TA_USER_ASSERT(pmap->procs() == typename pmap_interface::size_type(world.size()),
"Array::Array() -- The number of processes in the process map is not equal to that of the world object.");
}
// Validate the shape
TA_USER_ASSERT(! shape.empty(),
"Array::Array() -- The shape is not initialized.");
TA_USER_ASSERT(shape.validate(trange.tiles_range()),
"Array::Array() -- The range of the shape is not equal to the tiles range.");
return std::shared_ptr<impl_type>(new impl_type(world, trange, shape, pmap), lazy_deleter);
}
public:
/// Default constructor
/// Constructs an uninitialized array object. Uninitialized arrays contain
/// no tile or meta data. Most of the functions are not available when the
/// array is uninitialized, but these arrays may be assign via a tensor
/// expression assignment or the copy construction.
DistArray() : pimpl_() { }
/// Copy constructor
/// This is a shallow copy, that is no data is copied.
/// \param other The array to be copied
DistArray(const DistArray_& other) : pimpl_(other.pimpl_) { }
/// Dense array constructor
/// Constructs an array with the given meta data. This constructor only
/// initializes the array meta data; the array tiles are empty and must be
/// assigned by the user.
/// \param world The world where the array will live.
/// \param trange The tiled range object that will be used to set the array tiling.
/// \param pmap The tile index -> process map
DistArray(World& world, const trange_type& trange,
const std::shared_ptr<pmap_interface>& pmap = std::shared_ptr<pmap_interface>()) :
pimpl_(init(world, trange, shape_type(), pmap))
{ }
/// Sparse array constructor
/// Constructs an array with the given meta data. This constructor only
/// initializes the array meta data; the array tiles are empty and must be
/// assigned by the user.
/// \param world The world where the array will live.
/// \param trange The tiled range object that will be used to set the array tiling.
/// \param shape The array shape that defines zero and non-zero tiles
/// \param pmap The tile index -> process map
DistArray(World& world, const trange_type& trange, const shape_type& shape,
const std::shared_ptr<pmap_interface>& pmap = std::shared_ptr<pmap_interface>()) :
pimpl_(init(world, trange, shape, pmap))
{ }
/// Unary transform constructor
/// This constructor uses the meta data of `other` to initialize the meta
/// data of the new array. In addition, the tiles of the new array are also
/// initialized using the `op` function/functor, which creates transfroms
/// each tile in `other` using `op`
/// \param other The array to be copied
template <typename OtherTile, typename Op>
DistArray(const DistArray<OtherTile,Policy>& other, Op&& op) :
pimpl_()
{
*this = foreach<Tile,OtherTile,Op>(other, op);
}
/// Destructor
/// This is a distributed lazy destructor. The object will only be deleted
/// after the last reference to the world object on all nodes has been
/// destroyed.
~DistArray() { }
/// Create a deep copy of this array
/// \return An array that is equal to this array
DistArray_ clone() const {
return TiledArray::clone(*this);
}
/// Wait for lazy tile cleanup
/// This function will wait for cleanup of tile data that has been
/// scheduled for lazy deletion. Ready tasks will be executed by this
/// function while waiting for cleanup. This function will timeout if
/// the wait time exceeds the timeout specified in the `MAD_WAIT_TIMEOUT`
/// environment variable. The default timeout is 900 seconds.
/// \param world The world that to be used to execute ready tasks.
/// \throw madness::MadnessException When timeout has been exceeded.
static void wait_for_lazy_cleanup(World& world,
const double = 60.0)
{
try {
world.await([&]() { return (cleanup_counter_ == 0); }, true);
} catch(...) {
printf("%i: Array lazy cleanup timeout with %i pending cleanup(s)\n",
world.rank(), int(cleanup_counter_));
throw;
}
}
/// Copy constructor
/// This is a shallow copy, that is no data is copied.
/// \param other The array to be copied
DistArray_& operator=(const DistArray_& other) {
pimpl_ = other.pimpl_;
return *this;
}
/// Global object id
/// \return A globally unique identifier.
/// \note This function is primarily used for debugging purposes. Users
/// should not rely on this function.
madness::uniqueidT id() const { return pimpl_->id(); }
/// Begin iterator factory function
/// \return An iterator to the first local tile.
iterator begin() {
check_pimpl();
return pimpl_->begin();
}
/// Begin const iterator factory function
/// \return A const iterator to the first local tile.
const_iterator begin() const {
check_pimpl();
return pimpl_->cbegin();
}
/// End iterator factory function
/// \return An iterator to one past the last local tile.
iterator end() {
check_pimpl();
return pimpl_->end();
}
/// End const iterator factory function
/// \return A const iterator to one past the last local tile.
const_iterator end() const {
check_pimpl();
return pimpl_->cend();
}
/// Find local or remote tile
/// \tparam Index The index type
/// \param i The tile index
/// \return A \c future to tile \c i
/// \throw TiledArray::Exception When tile \c i is zero
template <typename Index>
Future<value_type> find(const Index& i) const {
check_index(i);
return pimpl_->get(i);
}
/// Find local or remote tile
/// \tparam Integer An integer type
/// \param i The tile index, as an \c std::initializer_list<Integer>
/// \return A \c future to tile \c i
/// \throw TiledArray::Exception When tile \c i is zero
template <typename Integer>
Future<value_type> find(const std::initializer_list<Integer>& i) const {
return find<std::initializer_list<Integer>>(i);
}
/// Set a tile and fill it using a sequence
/// \tparam Index An index or integral type
/// \tparam InIter An input iterator
/// \param i The index or the ordinal of the tile to be set
/// \param first The iterator that points to the start of the input sequence
template <typename Index, typename InIter>
typename std::enable_if<detail::is_input_iterator<InIter>::value>::type
set(const Index& i, InIter first) {
check_index(i);
pimpl_->set(i, value_type(pimpl_->trange().make_tile_range(i), first));
}
/// Set a tile and fill it using a sequence
/// \tparam Integer An integral type
/// \tparam InIter An input iterator
/// \param i The tile index, as an \c std::initializer_list<Integer>
/// \param first The iterator that points to the new tile data
template <typename Integer, typename InIter>
typename std::enable_if<detail::is_input_iterator<InIter>::value>::type
set(const std::initializer_list<Integer>& i, InIter first) {
set<std::initializer_list<Integer>>(i, first);
}
/// Set a tile and fill it using a value
/// \tparam Index An index or integral type
/// \tparam InIter An input iterator
/// \param i The index or the ordinal of the tile to be set
/// \param value the value used to fill the tile
template <typename Index>
void set(const Index& i, const element_type& value = element_type()) {
check_index(i);
pimpl_->set(i, value_type(pimpl_->trange().make_tile_range(i), value));
}
/// Set a tile and fill it using a value
/// \tparam Integer An integral type
/// \tparam InIter An input iterator
/// \param i The tile index, as an \c std::initializer_list<Integer>
/// \param value the value used to fill the tile
template <typename Integer>
void set(const std::initializer_list<Integer>& i,
const element_type& value = element_type()) {
set<std::initializer_list<Integer>>(i, value);
}
/// Set a tile directly using a future
/// \tparam Index An index or integral type
/// \param i The index or the ordinal of the tile to be set
/// \param f A future to the tile
template <typename Index>
void set(const Index& i, const Future<value_type>& f) {
check_index(i);
pimpl_->set(i, f);
}
/// Set a tile directly using a future
/// \tparam Integer An integral type
/// \param i The tile index, as an \c std::initializer_list<Integer>
/// \param f A future to the tile
template <typename Integer>
void set(const std::initializer_list<Integer>& i,
const Future<value_type>& f) {
set<std::initializer_list<Integer>>(i, f);
}
/// Set a tile using a Tile object
/// \tparam Index An index or integral type
/// \param i The tile index to be set
/// \param v The tile value
template <typename Index>
void set(const Index& i, const value_type& v) {
check_index(i);
pimpl_->set(i, v);
}
/// Set a tile using a Tile object
/// \tparam Integer An integral type
/// \param i The tile index, as an \c std::initializer_list<Integer>
/// \param v The tile value
template <typename Integer>
void set(const std::initializer_list<Integer>& i, const value_type& v) {
set<std::initializer_list<Integer>>(i, v);
}
/// Fill all local tiles
/// \param value The fill value
void fill_local(const element_type& value = element_type()) {
init_tiles([=] (const range_type& range)
{ return value_type(range, value); });
}
/// Fill all local tiles
/// \param value The fill value
void fill(const element_type& value = element_type()) {
fill_local(value);
}
/// Initialize tiles with a user provided functor
/// This function is used to initialize tiles of the array via a function
/// (or functor). The work is done in parallel, therefore \c op must be a
/// thread safe function/functor. The signature of the functor should be:
/// \code
/// value_type op(const range_type&)
/// \endcode
/// For example, in the following code, the array tiles are initialized with
/// random numbers from 0 to 1:
/// \code
/// array.init_local_tiles([] (const TiledArray::Range& range) -> TiledArray::Tensor<double>
/// {
/// // Initialize the tile with the given range object
/// TiledArray::Tensor<double> tile(range);
///
/// // Initialize the random number generator
/// std::default_random_engine generator;
/// std::uniform_real_distribution<double> distribution(0.0,1.0);
///
/// // Fill the tile with random numbers
/// for(auto& value : tile)
/// value = distribution(generator);
///
/// return tile;
/// });
/// \endcode
/// \tparam Op Tile operation type
/// \param op The operation used to generate tiles
template <typename Op>
void init_tiles(Op&& op) {
check_pimpl();
auto it = pimpl_->pmap()->begin();
const auto end = pimpl_->pmap()->end();
for(; it != end; ++it) {
const auto index = *it;
if(! pimpl_->is_zero(index)) {
Future<value_type> tile = pimpl_->world().taskq.add(
[] (DistArray_& array, const size_type index, const Op& op) -> value_type
{ return op(array.trange().make_tile_range(index)); },
*this, index, op);
set(index, tile);
}
}
}
/// Tiled range accessor
/// \return A const reference to the tiled range object for the array
const trange_type& trange() const {
check_pimpl();
return pimpl_->trange();
}
/// Tile range accessor
/// \return A const reference to the range object for the array tiles
const range_type& range() const {
check_pimpl();
return pimpl_->range();
}
/// \deprecated use DistArray::elements_range()
DEPRECATED const typename trange_type::tiles_range_type& elements() const {
return elements_range();
}
/// Element range accessor
/// \return A const reference to the range object for the array elements
const typename trange_type::tiles_range_type& elements_range() const {
check_pimpl();
return pimpl_->trange().elements_range();
}
size_type size() const {
check_pimpl();
return pimpl_->size();
}
/// Create a tensor expression
/// \param vars A string with a comma-separated list of variables
/// \return A const tensor expression object
TiledArray::expressions::TsrExpr<const DistArray_, true>
operator ()(const std::string& vars) const {
#ifndef NDEBUG
const unsigned int n = 1u + std::count_if(vars.begin(), vars.end(),
[](const char c) { return c == ','; });
if(bool(pimpl_) && n != pimpl_->trange().tiles_range().rank()) {
if(World::get_default().rank() == 0) {
TA_USER_ERROR_MESSAGE( \
"The number of array annotation variables is not equal to the array dimension:" \
<< "\n number of variables = " << n \
<< "\n array dimension = " << pimpl_->trange().tiles_range().rank() );
}
TA_EXCEPTION("The number of array annotation variables is not equal to the array dimension.");
}
#endif // NDEBUG
return TiledArray::expressions::TsrExpr<const DistArray_, true>(*this, vars);
}
/// Create a tensor expression
/// \param vars A string with a comma-separated list of variables
/// \return A non-const tensor expression object
TiledArray::expressions::TsrExpr<DistArray_, true>
operator ()(const std::string& vars) {
#ifndef NDEBUG
const unsigned int n = 1u + std::count_if(vars.begin(), vars.end(),
[](const char c) { return c == ','; });
if(bool(pimpl_) && n != pimpl_->trange().tiles_range().rank()) {
if(World::get_default().rank() == 0) {
TA_USER_ERROR_MESSAGE( \
"The number of array annotation variables is not equal to the array dimension:" \
<< "\n number of variables = " << n \
<< "\n array dimension = " << pimpl_->trange().tiles_range().rank() );
}
TA_EXCEPTION("The number of array annotation variables is not equal to the array dimension.");
}
#endif // NDEBUG
return TiledArray::expressions::TsrExpr<DistArray_, true>(*this, vars);
}
/// \deprecated use DistArray::world()
DEPRECATED World& get_world() const {
check_pimpl();
return pimpl_->world();
}
/// World accessor
/// \return A reference to the world that owns this array.
World& world() const {
check_pimpl();
return pimpl_->world();
}
/// \deprecated use DistArray::pmap()
DEPRECATED const std::shared_ptr<pmap_interface>& get_pmap() const {
check_pimpl();
return pimpl_->pmap();
}
/// Process map accessor
/// \return A reference to the process map that owns this array.
const std::shared_ptr<pmap_interface>& pmap() const {
check_pimpl();
return pimpl_->pmap();
}
/// Check dense/sparse
/// \return \c true when \c Array is dense, \c false otherwise.
bool is_dense() const {
check_pimpl();
return pimpl_->is_dense();
}
/// \deprecated use DistArray::shape()
DEPRECATED const shape_type& get_shape() const { return pimpl_->shape(); }
/// Shape accessor
/// Returns shape object. No communication is required.
/// \return reference to the shape object.
/// \throw TiledArray::Exception When the Array is dense.
inline const shape_type& shape() const { return pimpl_->shape(); }
/// Tile ownership
/// \tparam Index An index type
/// \param i The index of a tile
/// \return The process ID of the owner of a tile.
/// \note This does not indicate whether a tile exists or not. Only, the
/// rank of the process that would own it if it does exist.
template <typename Index>
ProcessID owner(const Index& i) const {
check_index(i);
return pimpl_->owner(i);
}
/// Check if the tile at index \c i is stored locally
/// \tparam Index A coordinate or ordinal index type
/// \param i The coordinate or ordinal index of the tile to be checked
/// \return \c true if \c owner(i) is equal to the MPI process rank,
/// otherwise \c false.
template <typename Index>
bool is_local(const Index& i) const {
check_index(i);
return pimpl_->is_local(i);
}
/// Check for zero tiles
/// \return \c true if tile at index \c i is zero, false if the tile is
/// non-zero or remote existence data is not available.
template <typename Index>
bool is_zero(const Index& i) const {
check_index(i);
return pimpl_->is_zero(i);
}
/// Swap this array with \c other
/// \param other The array to be swapped with this array.
void swap(DistArray_& other) { std::swap(pimpl_, other.pimpl_); }
/// Convert a distributed array into a replicated array
void make_replicated() {
check_pimpl();
if((! pimpl_->pmap()->is_replicated()) && (world().size() > 1)) {
// Construct a replicated array
std::shared_ptr<pmap_interface> pmap(new detail::ReplicatedPmap(world(), size()));
DistArray_ result = DistArray_(world(), trange(), shape(), pmap);
// Create the replicator object that will do an all-to-all broadcast of
// the local tile data.
std::shared_ptr<detail::Replicator<DistArray_> > replicator(
new detail::Replicator<DistArray_>(*this, result));
// Put the replicator pointer in the deferred cleanup object so it will
// be deleted at the end of the next fence.
TA_ASSERT(replicator.unique()); // Required for deferred_cleanup
madness::detail::deferred_cleanup(world(), replicator);
DistArray_::operator=(result);
}
}
/// Update shape data and remove tiles that are below the zero threshold
/// \note This function is a no-op for dense arrays.
void truncate() { TiledArray::truncate(*this); }
/// Check if the array is initialized
/// \return \c false if the array has been default initialized, otherwise
/// \c true.
bool is_initialized() const { return static_cast<bool>(pimpl_); }
private:
template <typename Index>
typename std::enable_if<std::is_integral<Index>::value>::type
check_index(const Index i) const {
check_pimpl();
TA_USER_ASSERT(pimpl_->range().includes(i),
"The ordinal index used to access an array tile is out of range.");
}
template <typename Index>
typename std::enable_if<! std::is_integral<Index>::value>::type
check_index(const Index& i) const {
check_pimpl();
TA_USER_ASSERT(pimpl_->range().includes(i),
"The coordinate index used to access an array tile is out of range.");
TA_USER_ASSERT(i.size() == pimpl_->trange().tiles_range().rank(),
"The number of elements in the coordinate index does not match the dimension of the array.");
}
/// Makes sure pimpl has been initialized
void check_pimpl() const {
TA_USER_ASSERT(pimpl_,
"The Array has not been initialized, likely reason: it was default constructed and used.");
}
}; // class Array
template <typename Tile, typename Policy>
madness::AtomicInt DistArray<Tile, Policy>::cleanup_counter_;
#ifndef TILEDARRAY_HEADER_ONLY
extern template
class DistArray<Tensor<double, Eigen::aligned_allocator<double> >, DensePolicy>;
extern template
class DistArray<Tensor<float, Eigen::aligned_allocator<float> >, DensePolicy>;
extern template
class DistArray<Tensor<int, Eigen::aligned_allocator<int> >, DensePolicy>;
extern template
class DistArray<Tensor<long, Eigen::aligned_allocator<long> >, DensePolicy>;
// extern template
// class DistArray<Tensor<std::complex<double>, Eigen::aligned_allocator<std::complex<double> > >, DensePolicy>;
// extern template
// class DistArray<Tensor<std::complex<float>, Eigen::aligned_allocator<std::complex<float> > >, DensePolicy>
extern template
class DistArray<Tensor<double, Eigen::aligned_allocator<double> >, SparsePolicy>;
extern template
class DistArray<Tensor<float, Eigen::aligned_allocator<float> >, SparsePolicy>;
extern template
class DistArray<Tensor<int, Eigen::aligned_allocator<int> >, SparsePolicy>;
extern template
class DistArray<Tensor<long, Eigen::aligned_allocator<long> >, SparsePolicy>;
// extern template
// class DistArray<Tensor<std::complex<double>, Eigen::aligned_allocator<std::complex<double> > >, SparsePolicy>;
// extern template
// class DistArray<Tensor<std::complex<float>, Eigen::aligned_allocator<std::complex<float> > >, SparsePolicy>;
#endif // TILEDARRAY_HEADER_ONLY
/// Add the tensor to an output stream
/// This function will iterate through all tiles on node 0 and print non-zero
/// tiles. It will wait for each tile to be evaluated (i.e. it is a blocking
/// function). Tasks will continue to be processed.
/// \tparam T The element type of Array
/// \tparam Tile The Tile type
/// \param os The output stream
/// \param a The array to be put in the output stream
/// \return A reference to the output stream
template <typename Tile, typename Policy>
inline std::ostream& operator<<(std::ostream& os, const DistArray<Tile, Policy>& a) {
if(a.world().rank() == 0) {
for(std::size_t i = 0; i < a.size(); ++i)
if(! a.is_zero(i)) {
const typename DistArray<Tile, Policy>::value_type tile = a.find(i).get();
os << i << ": " << tile << "\n";
}
}
a.world().gop.fence();
return os;
}
} // namespace TiledArray
#endif // TILEDARRAY_ARRAY_H__INCLUDED
|