This file is indexed.

/usr/include/TiledArray/conversions/foreach.h is in libtiledarray-dev 0.6.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2015  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Justus Calvin
 *  Department of Chemistry, Virginia Tech
 *
 *  foreach.h
 *  Apr 15, 2015
 *
 */

#ifndef TILEDARRAY_CONVERSIONS_FOREACH_H__INCLUDED
#define TILEDARRAY_CONVERSIONS_FOREACH_H__INCLUDED

#include <TiledArray/type_traits.h>

/// Forward declarations
namespace Eigen {
  template <typename> class aligned_allocator;
} // namespace Eigen

namespace TiledArray {

  /// Forward declarations
  template <typename, typename> class DistArray;
  template <typename, typename> class Tensor;
  class DensePolicy;
  class SparsePolicy;

  namespace detail {

    namespace {

      template <typename Op, typename Result, typename Arg, bool inplace>
      struct void_op_helper;

      template <typename Op, typename Result, typename Arg>
      struct void_op_helper<Op, Result, Arg, false> {
        Result operator()(Op&&op, const Arg& arg) {
          Result result;
          op(result,arg);
          return result;
        }
      };
      template <typename Op, typename Arg>
      struct void_op_helper<Op, Arg, Arg, true> {
        Arg operator()(Op&&op, Arg& arg) {
          op(arg);
          return arg;
        }
      };

      template <typename Op, typename Result, typename Arg, typename OpResult, bool inplace>
      struct nonvoid_op_helper;

      template <typename Op, typename Result, typename Arg, typename OpResult>
      struct nonvoid_op_helper<Op, Result, Arg, OpResult, false> {
        Result operator()(Op&&op, const Arg& arg, OpResult& op_result) {
          Result result;
          op_result = op(result,arg);
          return result;
        }
      };
      template <typename Op, typename Arg, typename OpResult>
      struct nonvoid_op_helper<Op, Arg, Arg, OpResult, true> {
        Arg operator()(Op&&op, Arg& arg, OpResult& op_result) {
          op_result = op(arg);
          return arg;
        }
      };

    }

    /// base implementation of dense TiledArray::foreach

    /// \note can't autodeduce \c ResultTile from \c void \c Op(ResultTile,ArgTile)
    template <typename ResultTile, typename ArgTile, typename Op, bool inplace = false>
    inline DistArray<ResultTile, DensePolicy> foreach (
        const_if_t<not inplace, DistArray<ArgTile, DensePolicy>>& arg,
        Op && op) {
      typedef DistArray<ArgTile, DensePolicy> arg_array_type;
      typedef DistArray<ResultTile, DensePolicy> result_array_type;

      World& world = arg.world();

      // Make an empty result array
      result_array_type result(world, arg.trange(), arg.pmap());

      // Construct the task function for making result tiles.
      auto task = [&op](const_if_t<not inplace, typename arg_array_type::value_type>& arg_tile)
          -> typename result_array_type::value_type {
        void_op_helper<Op,
            typename result_array_type::value_type,
            typename arg_array_type::value_type,
            inplace> op_caller;
        return op_caller(std::forward<Op>(op), arg_tile);
      };

      // Iterate over local tiles of arg
      for (auto index: *(arg.pmap())) {
        // Spawn a task to evaluate the tile
        Future<typename result_array_type::value_type> tile =
            world.taskq.add(task, arg.find(index));

        // Store result tile
        result.set(index, tile);
      }

      return result;
    }

    /// base implementation of sparse TiledArray::foreach

    /// \note can't autodeduce \c ResultTile from \c void \c Op(ResultTile,ArgTile)
    template <typename ResultTile, typename ArgTile, typename Op, bool inplace = false>
    inline DistArray<ResultTile, SparsePolicy>
    foreach(const_if_t<not inplace, DistArray<ArgTile, SparsePolicy>>& arg, Op&& op) {
      typedef DistArray<ArgTile, SparsePolicy> arg_array_type;
      typedef DistArray<ResultTile, SparsePolicy> result_array_type;

      typedef typename arg_array_type::value_type arg_value_type;
      typedef typename result_array_type::value_type result_value_type;
      typedef typename arg_array_type::size_type size_type;
      typedef typename arg_array_type::shape_type shape_type;
      typedef std::pair<size_type, Future<result_value_type>> datum_type;

      // Create a vector to hold local tiles
      std::vector<datum_type> tiles;
      tiles.reserve(arg.pmap()->size());

      // Construct a tensor to hold updated tile norms for the result shape.
      TiledArray::Tensor<typename shape_type::value_type,
          Eigen::aligned_allocator<typename shape_type::value_type> >
      tile_norms(arg.trange().tiles_range(), 0);

      // Construct the task function used to construct the result tiles.
      madness::AtomicInt counter; counter = 0;
      int task_count = 0;
      auto task = [&op,&counter,&tile_norms](const size_type index,
          const_if_t<not inplace, arg_value_type>& arg_tile) -> result_value_type {
        nonvoid_op_helper<Op,
            result_value_type,
            arg_value_type,
            typename shape_type::value_type,
            inplace> op_caller;
        auto result_tile = op_caller(std::forward<Op>(op), arg_tile, tile_norms[index]);
        ++counter;
        return std::move(result_tile);
      };

      World& world = arg.world();

      // Get local tile index iterator
      for(auto index: *(arg.pmap())) {
        if(arg.is_zero(index))
          continue;
        auto arg_tile = arg.find(index);
        auto result_tile = world.taskq.add(task, index, arg_tile);
        ++task_count;
        tiles.push_back(datum_type(index, result_tile));
      }

      // Wait for tile norm data to be collected.
      if(task_count > 0)
        world.await([&counter,task_count] () -> bool { return counter == task_count; });

      // Construct the new array
      result_array_type result(world, arg.trange(),
          shape_type(world, tile_norms, arg.trange()), arg.pmap());
      for(typename std::vector<datum_type>::const_iterator it = tiles.begin(); it != tiles.end(); ++it) {
        const size_type index = it->first;
        if(! result.is_zero(index))
          result.set(it->first, it->second);
      }

      return result;
    }

  } // namespace TiledArray::detail

  /// Apply a function to each tile of a dense Array

  /// This function uses an \c Array object to generate a new \c Array where the
  /// output tiles are a function of the input tiles. Users must provide a
  /// function/functor that initializes the tiles for the new \c Array object.
  /// For example, if we want to create a new array with were each element is
  /// equal to the square root of the corresponding element of the original
  /// array:
  /// \code
  /// TiledArray::Array<2, double> out_array =
  ///     foreach(in_array, [=] (TiledArray::Tensor<double>& out_tile,
  ///                            const TiledArray::Tensor<double>& in_tile) {
  ///       out_tile = in_tile.unary([=] (const double value) -> double
  ///           { return std::sqrt(value); });
  ///     });
  /// \endcode
  /// The expected signature of the tile operation is:
  /// \code
  /// void op(      typename TiledArray::DistArray<ResultTile,DensePolicy>::value_type& result_tile,
  ///         const typename TiledArray::DistArray<ArgTile,DensePolicy>::value_type& arg_tile);
  /// \endcode
  /// \tparam Op Tile operation
  /// \tparam ResultTile The tile type of the result array
  /// \tparam ArgTile The tile type of \c arg
  /// \param op The tile function
  /// \param arg The argument array
  template <typename ResultTile, typename ArgTile, typename Op,
            typename = typename std::enable_if<!std::is_same<ResultTile,ArgTile>::value>::type>
  inline DistArray<ResultTile, DensePolicy>
  foreach(const DistArray<ArgTile, DensePolicy>& arg, Op&& op) {
    return detail::foreach<ResultTile,ArgTile,Op>(arg,std::forward<Op>(op));
  }

  /// Apply a function to each tile of a dense Array

  /// Specialization of foreach<ResultTile,ArgTile,Op> for
  /// the case \c ResultTile == \c ArgTile
  template <typename Tile, typename Op>
  inline DistArray<Tile, DensePolicy>
  foreach(const DistArray<Tile, DensePolicy>& arg, Op&& op) {
    return detail::foreach<Tile,Tile,Op>(arg,std::forward<Op>(op));
  }

  /// Modify each tile of a dense Array

  /// This function modifies the tile data of \c Array object. Users must
  /// provide a function/functor that modifies the tile data. For example, if we
  /// want to modify the elements of the array to be equal to the the square
  /// root of the original value:
  /// \code
  /// foreach(array, [] (TiledArray::TensorD& tile) {
  ///   tile.inplace_unary([&] (double& value) { value = std::sqrt(value); });
  /// });
  /// \endcode
  /// The expected signature of the tile operation is:
  /// \code
  /// void op(typename TiledArray::DistArray<Tile,DensePolicy>::value_type& tile);
  /// \endcode
  /// \tparam Op Mutating tile operation
  /// \tparam Tile The tile type of the array
  /// \param op The mutating tile function
  /// \param arg The argument array to be modified
  /// \param fence A flag that indicates fencing behavior. If \c true this
  /// function will fence before data is modified.
  /// \warning This function fences by default to avoid data race conditions.
  /// Only disable the fence if you can ensure, the data is not being read by
  /// another thread.
  /// \warning If there is a another copy of \c arg that was created via (or
  /// arg was created by) the \c Array copy constructor or copy assignment
  /// operator, this function will modify the data of that array since the data
  /// of a tile is held in a \c std::shared_ptr. If you need to ensure other
  /// copies of the data are not modified or this behavior causes problems in
  /// your application, use the \c TiledArray::foreach function instead.
  template <typename Tile, typename Op>
  inline void
  foreach_inplace(DistArray<Tile, DensePolicy>& arg, Op&& op, bool fence = true) {
    // The tile data is being modified in place, which means we may need to
    // fence to ensure no other threads are using the data.
    if(fence)
      arg.world().gop.fence();

    arg = detail::foreach<Tile, Tile, Op, true>(arg, std::forward<Op>(op));
  }

  /// Apply a function to each tile of a sparse Array

  /// This function uses an \c Array object to generate a new \c Array where the
  /// output tiles are a function of the input tiles. Users must provide a
  /// function/functor that initializes the tiles for the new \c Array object.
  /// For example, if we want to create a new array with were each element is
  /// equal to the square root of the corresponding element of the original
  /// array:
  /// \code
  /// TiledArray::Array<2, double, Tensor<double>, SparsePolicy> out_array =
  ///     foreach(in_array, [] (TiledArray::Tensor<double>& out_tile,
  ///                           const TiledArray::Tensor<double>& in_tile) -> float
  ///     {
  ///       double norm_squared = 0.0;
  ///       out_tile = in_tile.unary([&] (const double value) -> double {
  ///         const double result = std::sqrt(value);
  ///         norm_squared += result * result;
  ///         return result;
  ///       });
  ///       return std::sqrt(norm_squared);
  ///     });
  /// \endcode
  /// The expected signature of the tile operation is:
  /// \code
  /// float op(typename TiledArray::DistArray<Tile,SparsePolicy>::value_type& result_tile,
  ///     const typename TiledArray::DistArray<Tile,SparsePolicy>::value_type& arg_tile);
  /// \endcode
  /// where the return value of \c op is the 2-norm (Frobenius norm) of the
  /// result tile.
  /// \note This function should not be used to initialize the tiles of an array
  /// object.
  /// \tparam Op Tile operation
  /// \tparam Tile The tile type of the array
  /// \param op The tile function
  /// \param arg The argument array
  template <typename ResultTile, typename ArgTile, typename Op,
            typename = typename std::enable_if<!std::is_same<ResultTile,ArgTile>::value>::type>
  inline DistArray<ResultTile, SparsePolicy>
  foreach(const DistArray<ArgTile, SparsePolicy> arg, Op&& op) {
    return detail::foreach<ResultTile,ArgTile,Op>(arg,std::forward<Op>(op));
  }

  /// Apply a function to each tile of a sparse Array

  /// Specialization of foreach<ResultTile,ArgTile,Op> for
  /// the case \c ResultTile == \c ArgTile
  template <typename Tile, typename Op>
  inline DistArray<Tile, SparsePolicy>
  foreach(const DistArray<Tile, SparsePolicy>& arg, Op&& op) {
    return detail::foreach<Tile,Tile,Op>(arg,std::forward<Op>(op));
  }


  /// Modify each tile of a sparse Array

  /// This function modifies the tile data of \c Array object. Users must
  /// provide a function/functor that modifies the tile data in place. For
  /// example, if we want to modify the elements of the array to be equal to the
  /// square root of the original value:
  /// \code
  /// foreach(array, [] (TiledArray::Tensor<double>& tile) -> float {
  ///   double norm_squared = 0.0;
  ///   tile.inplace_unary([&] (double& value) {
  ///     norm_squared += value; // Assume value >= 0
  ///     value = std::sqrt(value);
  ///   });
  ///   return std::sqrt(norm_squared);
  /// });
  /// \endcode
  /// The expected signature of the tile operation is:
  /// \code
  /// float op(typename TiledArray::DistArray<Tile,SparsePolicy>::value_type& tile);
  /// \endcode
  /// where the return value of \c op is the 2-norm (Fibrinous norm) of the
  /// tile.
  /// \note This function should not be used to initialize the tiles of an array
  /// object.
  /// \tparam Op Tile operation
  /// \tparam Tile The tile type of the array
  /// \param op The mutating tile function
  /// \param arg The argument array to be modified
  /// \param fence A flag that indicates fencing behavior. If \c true this
  /// function will fence before data is modified.
  /// \warning This function fences by default to avoid data race conditions.
  /// Only disable the fence if you can ensure, the data is not being read by
  /// another thread.
  /// \warning If there is a another copy of \c arg that was created via (or
  /// arg was created by) the \c Array copy constructor or copy assignment
  /// operator, this function will modify the data of that array since the data
  /// of a tile is held in a \c std::shared_ptr. If you need to ensure other
  /// copies of the data are not modified or this behavior causes problems in
  /// your application, use the \c TiledArray::foreach function instead.
  template <typename Tile, typename Op>
  inline void
  foreach_inplace(DistArray<Tile, SparsePolicy>& arg, Op&& op, bool fence = true) {

    // The tile data is being modified in place, which means we may need to
    // fence to ensure no other threads are using the data.
    if(fence)
      arg.world().gop.fence();

    // Set the arg with the new array
    arg = detail::foreach<Tile,Tile,Op,true>(arg, std::forward<Op>(op));
  }

} // namespace TiledArray

#endif // TILEDARRAY_CONVERSIONS_TRUNCATE_H__INCLUDED