This file is indexed.

/usr/include/TiledArray/conversions/eigen.h is in libtiledarray-dev 0.6.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2013  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Justus Calvin
 *  Department of Chemistry, Virginia Tech
 *
 *  eigen.h
 *  May 02, 2015
 *
 */

#ifndef TILEDARRAY_EIGEN_H__INCLUDED
#define TILEDARRAY_EIGEN_H__INCLUDED

#include <tiledarray_fwd.h>
#include <TiledArray/tensor.h>
#include <TiledArray/error.h>
#include <TiledArray/math/eigen.h>
#include <TiledArray/madness.h>
#include <TiledArray/pmap/replicated_pmap.h>
#include "TiledArray/dist_array.h"

namespace TiledArray {

  // Convenience typedefs
  typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> EigenMatrixXd;
  typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> EigenMatrixXf;
  typedef Eigen::Matrix<std::complex<double>, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> EigenMatrixXcd;
  typedef Eigen::Matrix<std::complex<float>, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> EigenMatrixXcf;
  typedef Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> EigenMatrixXi;
  typedef Eigen::Matrix<long, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> EigenMatrixXl;
  typedef Eigen::Matrix<double, Eigen::Dynamic, 1> EigenVectorXd;
  typedef Eigen::Matrix<float, Eigen::Dynamic, 1> EigenVectorXf;
  typedef Eigen::Matrix<std::complex<double>, 1, Eigen::Dynamic> EigenVectorXcd;
  typedef Eigen::Matrix<std::complex<float>, 1, Eigen::Dynamic> EigenVectorXcf;
  typedef Eigen::Matrix<int, Eigen::Dynamic, 1> EigenVectorXi;
  typedef Eigen::Matrix<long, Eigen::Dynamic, 1> EigenVectorXl;


  /// Construct a const Eigen::Map object for a given Tensor object

  /// \tparam T The tensor element type
  /// \tparam A The tensor allocator type
  /// \param tensor The tensor object
  /// \param m The number of rows in the result matrix
  /// \param n The number of columns in the result matrix
  /// \return An m x n Eigen matrix map for \c tensor
  /// \throw TiledArray::Exception When m * n is not equal to \c tensor size
  template <typename T, typename A>
  inline Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>, Eigen::AutoAlign>
  eigen_map(const Tensor<T, A>& tensor, const std::size_t m, const std::size_t n) {
    TA_ASSERT((m * n) == tensor.size());

    return Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic,
        Eigen::RowMajor>, Eigen::AutoAlign>(tensor.data(), m, n);
  }

  /// Construct an Eigen::Map object for a given Tensor object

  /// \tparam T The tensor element type
  /// \tparam A The tensor allocator type
  /// \param tensor The tensor object
  /// \param m The number of rows in the result matrix
  /// \param n The number of columns in the result matrix
  /// \return An m x n Eigen matrix map for \c tensor
  /// \throw TiledArray::Exception When m * n is not equal to \c tensor size
  template <typename T, typename A>
  inline Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>, Eigen::AutoAlign>
  eigen_map(Tensor<T, A>& tensor, const std::size_t m, const std::size_t n) {
    TA_ASSERT((m * n) == tensor.size());

    return Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic,
        Eigen::RowMajor>, Eigen::AutoAlign>(tensor.data(), m, n);
  }

  /// Construct a const Eigen::Map object for a given Tensor object

  /// \tparam T The tensor element type
  /// \tparam A The tensor allocator type
  /// \param tensor The tensor object
  /// \param n The number of elements in the result matrix
  /// \return An n element Eigen vector map for \c tensor
  /// \throw TiledArray::Exception When n is not equal to \c tensor size
  template <typename T, typename A>
  inline Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1>, Eigen::AutoAlign>
  eigen_map(const Tensor<T, A>& tensor, const std::size_t n) {
    TA_ASSERT(n == tensor.size());

    return Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1>,
        Eigen::AutoAlign>(tensor.data(), n);
  }

  /// Construct an Eigen::Map object for a given Tensor object

  /// \tparam T The tensor element type
  /// \tparam A The tensor allocator type
  /// \param tensor The tensor object
  /// \param n The number of elements in the result matrix
  /// \return An n element Eigen vector map for \c tensor
  /// \throw TiledArray::Exception When m * n is not equal to \c tensor size
  template <typename T, typename A>
  inline Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, 1>, Eigen::AutoAlign>
  eigen_map(Tensor<T, A>& tensor, const std::size_t n) {
    TA_ASSERT(n == tensor.size());

    return Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, 1>,
        Eigen::AutoAlign>(tensor.data(), n);
  }

  /// Construct a const Eigen::Map object for a given Tensor object

  /// The dimensions of the result tensor
  /// \tparam T The tensor element type
  /// \tparam A The tensor allocator type
  /// \param tensor The tensor object
  /// \return An Eigen matrix map for \c tensor
  /// \throw TiledArray::Exception When \c tensor dimensions are not equal to 2 or 1.
  template <typename T, typename A>
  inline Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>, Eigen::AutoAlign>
  eigen_map(const Tensor<T, A>& tensor) {
    TA_ASSERT((tensor.range().rank() == 2u) || (tensor.range().rank() == 1u));
    const auto* restrict const tensor_extent = tensor.range().extent_data();
    return eigen_map(tensor, tensor_extent[0],
            (tensor.range().rank() == 2u ? tensor_extent[1] : 1ul));
  }

  /// Construct an Eigen::Map object for a given Tensor object

  /// \tparam T The tensor element type
  /// \tparam A The tensor allocator type
  /// \param tensor The tensor object
  /// \return An Eigen matrix map for \c tensor
  /// \throw When \c tensor dimensions are not equal to 2 or 1.
  template <typename T, typename A>
  inline Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>, Eigen::AutoAlign>
  eigen_map(Tensor<T, A>& tensor) {
    TA_ASSERT((tensor.range().rank() == 2u) || (tensor.range().rank() == 1u));
    const auto* restrict const tensor_extent = tensor.range().extent_data();
    return eigen_map(tensor, tensor_extent[0],
            (tensor.range().rank() == 2u ? tensor_extent[1] : 1ul));
  }

  /// Copy a block of an Eigen matrix into a tensor

  /// A block of \c matrix will be copied into \c tensor. The block
  /// dimensions will be determined by the dimensions of the tensor's range.
  /// \tparam T The tensor element type
  /// \tparam A The tensor allocator type
  /// \tparam Derived The derived type of an Eigen matrix
  /// \param[in] matrix The object that will be assigned the content of \c tensor
  /// \param[out] tensor The object that will be assigned the content of \c matrix
  /// \throw TiledArray::Exception When the dimensions of \c tensor are not equal
  /// to 1 or 2.
  /// \throw TiledArray::Exception When the range of \c tensor is outside the
  /// range of \c matrix .
  template <typename T, typename A, typename Derived>
  inline void eigen_submatrix_to_tensor(const Eigen::MatrixBase<Derived>& matrix, Tensor<T, A>& tensor) {
    typedef typename Tensor<T, A>::size_type size_type;
    TA_ASSERT((tensor.range().rank() == 2u) || (tensor.range().rank() == 1u));

    // Get pointers to the tensor range data
    const auto* restrict const tensor_lower = tensor.range().lobound_data();
    const auto* restrict const tensor_upper = tensor.range().upbound_data();
    const auto* restrict const tensor_extent = tensor.range().extent_data();

    if(tensor.range().rank() == 2u) {
      // Get tensor range data
      const std::size_t tensor_lower_0 = tensor_lower[0];
      const std::size_t tensor_lower_1 = tensor_lower[1];
      const std::size_t tensor_upper_0 = tensor_upper[0];
      const std::size_t tensor_upper_1 = tensor_upper[1];
      const std::size_t tensor_extent_0 = tensor_extent[0];
      const std::size_t tensor_extent_1 = tensor_extent[1];

      TA_ASSERT(tensor_upper_0 <= size_type(matrix.rows()));
      TA_ASSERT(tensor_upper_1 <= size_type(matrix.cols()));

      // Copy matrix
      eigen_map(tensor, tensor_extent_0, tensor_extent_1) =
          matrix.block(tensor_lower_0, tensor_lower_1,
          tensor_extent_0, tensor_extent_1);
    } else {
      // Get tensor range data
      const std::size_t tensor_lower_0 = tensor_lower[0];
      const std::size_t tensor_upper_0 = tensor_upper[0];
      const std::size_t tensor_extent_0 = tensor_extent[0];

      // Check that matrix is a vector.
      TA_ASSERT((matrix.rows() == 1) || (matrix.cols() == 1));

      if(matrix.rows() == 1) {
        TA_ASSERT(tensor_upper_0 <= size_type(matrix.cols()));

        // Copy the row vector to tensor
        eigen_map(tensor, 1, tensor_extent_0) =
            matrix.block(0, tensor_lower_0, 1, tensor_extent_0);
      } else {
        TA_ASSERT(tensor_upper_0 <= size_type(matrix.rows()));

        // Copy the column vector to tensor
        eigen_map(tensor, tensor_extent_0, 1) =
            matrix.block(tensor_lower_0, 0, tensor_extent_0, 1);
      }
    }
  }

  /// Copy the content of a tensor into an Eigen matrix block

  /// The content of tensor will be copied into a block of matrix. The block
  /// dimensions will be determined by the dimensions of the tensor's range.
  /// \tparam T The tensor element type
  /// \tparam A The tensor allocator type
  /// \tparam Derived The derived type of an Eigen matrix
  /// \param[in] tensor The object that will be copied to \c matrix
  /// \param[out] matrix The object that will be assigned the content of \c tensor
  /// \throw TiledArray::Exception When the dimensions of \c tensor are not equal
  /// to 1 or 2.
  /// \throw TiledArray::Exception When the range of \c tensor is outside the
  /// range of \c matrix .
  template <typename T, typename A, typename Derived>
  inline void tensor_to_eigen_submatrix(const Tensor<T, A>& tensor, Eigen::MatrixBase<Derived>& matrix) {
    typedef typename Tensor<T, A>::size_type size_type;
    TA_ASSERT((tensor.range().rank() == 2u) || (tensor.range().rank() == 1u));

    // Get pointers to the tensor range data
    const auto* restrict const tensor_lower = tensor.range().lobound_data();
    const auto* restrict const tensor_upper = tensor.range().upbound_data();
    const auto* restrict const tensor_extent = tensor.range().extent_data();

    if(tensor.range().rank() == 2) {
      // Get tensor range data
      const std::size_t tensor_lower_0 = tensor_lower[0];
      const std::size_t tensor_lower_1 = tensor_lower[1];
      const std::size_t tensor_upper_0 = tensor_upper[0];
      const std::size_t tensor_upper_1 = tensor_upper[1];
      const std::size_t tensor_extent_0 = tensor_extent[0];
      const std::size_t tensor_extent_1 = tensor_extent[1];

      TA_ASSERT(tensor_upper_0 <= size_type(matrix.rows()));
      TA_ASSERT(tensor_upper_1 <= size_type(matrix.cols()));

      // Copy tensor into matrix
      matrix.block(tensor_lower_0, tensor_lower_1,
          tensor_extent_0, tensor_extent_1) =
              eigen_map(tensor, tensor_extent_0, tensor_extent_1);
    } else {
      // Get tensor range data
      const std::size_t tensor_lower_0 = tensor_lower[0];
      const std::size_t tensor_upper_0 = tensor_upper[0];
      const std::size_t tensor_extent_0 = tensor_extent[0];

      TA_ASSERT((matrix.rows() == 1) || (matrix.cols() == 1));

      if(matrix.rows() == 1) {
        TA_ASSERT(tensor_upper_0 <= size_type(matrix.cols()));

        // Copy tensor into row vector
        matrix.block(0, tensor_lower_0, 1, tensor_extent_0) =
            eigen_map(tensor, 1, tensor_extent_0);
      } else {
        TA_ASSERT(tensor_upper_0 <= size_type(matrix.rows()));

        // Copy tensor into column vector
        matrix.block(tensor_lower_0, 0, tensor_extent_0, 1) =
            eigen_map(tensor, tensor_extent_0, 1);
      }
    }
  }

  namespace detail {

    /// Task function for converting Eigen submatrix to a tensor

    /// \tparam A Array type
    /// \tparam Derived The matrix type
    /// \param matrix The matrix that will be copied
    /// \param array The array that will hold the result
    /// \param i The index of the tile to be copied
    /// \param counter The task counter
    template <typename A, typename Derived>
    void counted_eigen_submatrix_to_tensor(const Eigen::MatrixBase<Derived>* matrix,
        A& array, const typename A::size_type i, madness::AtomicInt* counter)
    {
      typename A::value_type tensor(array.trange().make_tile_range(i));
      eigen_submatrix_to_tensor(*matrix, tensor);
      array.set(i, tensor);
      (*counter)++;
    }

    /// Task function for assigning a tensor to an Eigen submatrix

    /// \tparam Derived The matrix type
    /// \tparam T Tensor type
    /// \param matrix The matrix to be assigned
    /// \param tensor The tensor to be copied
    /// \param counter The task counter
    template <typename Derived, typename T>
    void counted_tensor_to_eigen_submatrix(const T& tensor,
        Eigen::MatrixBase<Derived>* matrix, madness::AtomicInt* counter)
    {
      tensor_to_eigen_submatrix(tensor, *matrix);
      (*counter)++;
    }

  } // namespace detail

  /// Convert an Eigen matrix into an Array object

  /// This function will copy the content of \c matrix into an \c Array object
  /// that is tiled according to the \c trange object. The copy operation is
  /// done in parallel, and this function will block until all elements of
  /// \c matrix have been copied into the result array tiles. The size of
  /// \c world.size() must be equal to 1 or \c replicate must be equal to
  /// \c true . If \c replicate is \c true, it is your responsibility to ensure
  /// that the data in matrix is identical on all nodes.
  /// Usage:
  /// \code
  /// Eigen::MatrixXd m(100, 100);
  /// // Fill m with data ...
  ///
  /// // Create a range for the new array object
  /// std::vector<std::size_t> blocks;
  /// for(std::size_t i = 0ul; i <= 100ul; i += 10ul)
  ///   blocks.push_back(i);
  /// std::array<TiledArray::TiledRange1, 2> blocks2 =
  ///     {{ TiledArray::TiledRange1(blocks.begin(), blocks.end()),
  ///        TiledArray::TiledRange1(blocks.begin(), blocks.end()) }};
  /// TiledArray::TiledRange trange(blocks2.begin(), blocks2.end());
  ///
  /// // Create an Array from an Eigen matrix.
  /// TiledArray::Array<double, 2> array =
  ///     eigen_to_array<TiledArray::Array<double, 2> >(world, trange, m);
  /// \endcode
  /// \tparam A The array type
  /// \tparam Derived The Eigen matrix derived type
  /// \param world The world where the array will live
  /// \param trange The tiled range of the new array
  /// \param matrix The Eigen matrix to be copied
  /// \param replicated \c true indicates that the result array should be a
  /// replicated array [default = false].
  /// \return An \c Array object that is a copy of \c matrix
  /// \throw TiledArray::Exception When world size is greater than 1
  /// \note This function will only work in non-distributed environments. If you
  /// need to convert an Eigen matrix to an \c Array object, you must implement
  /// it yourself. However, you may use \c eigen_submatrix_to_tensor to make
  /// writing such an algorithm easier.
  template <typename A, typename Derived>
  A eigen_to_array(World& world, const typename A::trange_type& trange,
      const Eigen::MatrixBase<Derived>& matrix, bool replicated = false)
  {
    typedef typename A::size_type size_type;
    // Check that trange matches the dimensions of other
    if((matrix.cols() > 1) && (matrix.rows() > 1)) {
      TA_USER_ASSERT(trange.tiles_range().rank() == 2,
          "TiledArray::eigen_to_array(): The number of dimensions in trange is not equal to that of the Eigen matrix.");
      TA_USER_ASSERT(trange.elements_range().extent_data()[0] == size_type(matrix.rows()),
          "TiledArray::eigen_to_array(): The number of rows in trange is not equal to the number of rows in the Eigen matrix.");
      TA_USER_ASSERT(trange.elements_range().extent_data()[1] == size_type(matrix.cols()),
          "TiledArray::eigen_to_array(): The number of columns in trange is not equal to the number of columns in the Eigen matrix.");
    } else {
      TA_USER_ASSERT(trange.tiles_range().rank() == 1,
          "TiledArray::eigen_to_array(): The number of dimensions in trange must match that of the Eigen matrix.");
      TA_USER_ASSERT(trange.elements_range().extent_data()[0] == size_type(matrix.size()),
          "TiledArray::eigen_to_array(): The size of trange must be equal to the matrix size.");
    }

    // Check that this is not a distributed computing environment
    if(! replicated)
      TA_USER_ASSERT(world.size() == 1,
          "An array cannot be assigned with an Eigen::Matrix when the number of MPI processes is greater than 1.");

    // Create a new tensor
    A array = (replicated && (world.size() > 1) ?
        A(world, trange, std::static_pointer_cast<typename A::pmap_interface>(
            std::shared_ptr<detail::ReplicatedPmap>(new detail::ReplicatedPmap(world, trange.tiles_range().volume())))) :
        A(world, trange));

    // Spawn tasks to copy Eigen to an Array
    madness::AtomicInt counter;
    counter = 0;
    std::size_t n = 0;
    for(std::size_t i = 0; i < array.size(); ++i) {
      world.taskq.add(& detail::counted_eigen_submatrix_to_tensor<A, Derived>,
          &matrix, array, i, &counter);
      ++n;
    }

    // Wait until the write tasks are complete
    array.world().await([&counter,n] () { return counter == n; });

    return array;
  }

  /// Convert an Array object into an Eigen matrix object

  /// This function will copy the content of an \c Array object into matrix. The
  /// copy operation is done in parallel, and this function will block until
  /// all elements of \c array have been copied into the result matrix. The size
  /// of world must be exactly equal to 1, or \c array must be a replicated
  /// object.
  /// Usage:
  /// \code
  /// TiledArray::Array<double, 2> array(world, trange);
  /// // Set tiles of array ...
  ///
  /// Eigen::MatrixXd m = array_to_eigen(array);
  /// \endcode
  /// \tparam Tile The array tile type
  /// \tparam EigenStorageOrder The storage order of the resulting Eigen::Matrix
  ///      object; the default is Eigen::ColMajor, i.e. the column-major storage
  /// \param array The array to be converted
  /// \throw TiledArray::Exception When world size is greater than 1 and
  /// \c array is not replicated.
  /// \throw TiledArray::Exception When the number of dimensions of \c array
  /// is not equal to 1 or 2.
  /// \note This function will only work in non-distributed environments.
  template <typename Tile, typename Policy,
            unsigned int EigenStorageOrder = Eigen::ColMajor>
  Eigen::Matrix<typename Tile::value_type, Eigen::Dynamic, Eigen::Dynamic,
                EigenStorageOrder>
  array_to_eigen(const DistArray<Tile, Policy>& array) {
    typedef Eigen::Matrix<typename Tile::value_type, Eigen::Dynamic,
                          Eigen::Dynamic, EigenStorageOrder>
        EigenMatrix;

    const auto rank = array.trange().tiles_range().rank();

    // Check that the array will fit in a matrix or vector
    TA_USER_ASSERT((rank == 2u) || (rank == 1u),
        "TiledArray::array_to_eigen(): The array dimensions must be equal to 1 or 2.");

    // Check that this is not a distributed computing environment or that the
    // array is replicated
    if(! array.pmap()->is_replicated())
      TA_USER_ASSERT(array.world().size() == 1,
          "TiledArray::array_to_eigen(): Array cannot be assigned with an Eigen::Matrix when the number of MPI processes is greater than 1.");

    // Construct the Eigen matrix
    const auto* restrict const array_extent = array.trange().elements_range().extent_data();
    // if array is sparse must initialize to zero
    EigenMatrix matrix = EigenMatrix::Zero(array_extent[0], (rank == 2 ? array_extent[1] : 1));

    // Spawn tasks to copy array tiles to the Eigen matrix
    madness::AtomicInt counter;
    counter = 0;
    std::size_t n = 0;
    for(std::size_t i = 0; i < array.size(); ++i) {
      if(! array.is_zero(i)) {
        array.world().taskq.add(
            & detail::counted_tensor_to_eigen_submatrix<EigenMatrix,
            typename DistArray<Tile, Policy>::value_type>,
            array.find(i), &matrix, &counter);
        ++n;
      }
    }

    // Wait until the above tasks are complete. Tasks will be processed by this
    // thread while waiting.
    array.world().await([&counter,n] () { return counter == n; });

    return matrix;
  }

  /// Convert a row-major matrix buffer into an Array object

  /// This function will copy the content of \c buffer into an \c Array object
  /// that is tiled according to the \c trange object. The copy operation is
  /// done in parallel, and this function will block until all elements of
  /// \c matrix have been copied into the result array tiles. The size of
  /// \c world.size() must be equal to 1 or \c replicate must be equal to
  /// \c true . If \c replicate is \c true, it is your responsibility to ensure
  /// that the data in \c buffer is identical on all nodes.
  /// Usage:
  /// \code
  /// double* buffer = new double[100 * 100];
  /// // Fill buffer with data ...
  ///
  /// // Create a range for the new array object
  /// std::vector<std::size_t> blocks;
  /// for(std::size_t i = 0ul; i <= 100ul; i += 10ul)
  ///   blocks.push_back(i);
  /// std::array<TiledArray::TiledRange1, 2> blocks2 =
  ///     {{ TiledArray::TiledRange1(blocks.begin(), blocks.end()),
  ///        TiledArray::TiledRange1(blocks.begin(), blocks.end()) }};
  /// TiledArray::TiledRange trange(blocks2.begin(), blocks2.end());
  ///
  /// // Create an Array from an Eigen matrix.
  /// TiledArray::Array<double, 2> array =
  ///     row_major_buffer_to_array<TiledArray::Array<double, 2> >(world, trange, buffer, 100, 100);
  ///
  /// delete [] buffer;
  /// \endcode
  /// \tparam A The array type
  /// \param world The world where the array will live
  /// \param trange The tiled range of the new array
  /// \param buffer The row-major matrix buffer to be copied
  /// \param m The number of rows in the matrix
  /// \param n The number of columns in the matrix
  /// \param replicated \c true indicates that the result array should be a
  /// replicated array [default = false].
  /// \return An \c Array object that is a copy of \c matrix
  /// \throw TiledArray::Exception When \c m and \c n are not equal to the
  /// number of rows or columns in tiled range.
  template <typename A>
  inline A row_major_buffer_to_array(World& world, const typename A::trange_type& trange,
      const typename A::value_type::value_type* buffer, const std::size_t m,
      const std::size_t n, const bool replicated = false)
  {
    TA_USER_ASSERT(trange.elements_range().extent_data()[0] == m,
        "TiledArray::eigen_to_array(): The number of rows in trange is not equal to m.");
    TA_USER_ASSERT(trange.elements_range().extent_data()[1] == n,
        "TiledArray::eigen_to_array(): The number of columns in trange is not equal to n.");

    typedef Eigen::Matrix<typename A::value_type::value_type, Eigen::Dynamic,
        Eigen::Dynamic, Eigen::RowMajor> matrix_type;
    return eigen_to_array(world, trange, Eigen::Map<const matrix_type,
        Eigen::AutoAlign>(buffer, m, n), replicated);
  }

  /// Convert a column-major matrix buffer into an Array object

  /// This function will copy the content of \c buffer into an \c Array object
  /// that is tiled according to the \c trange object. The copy operation is
  /// done in parallel, and this function will block until all elements of
  /// \c matrix have been copied into the result array tiles. The size of
  /// \c world.size() must be equal to 1 or \c replicate must be equal to
  /// \c true . If \c replicate is \c true, it is your responsibility to ensure
  /// that the data in \c buffer is identical on all nodes.
  /// Usage:
  /// \code
  /// double* buffer = new double[100 * 100];
  /// // Fill buffer with data ...
  ///
  /// // Create a range for the new array object
  /// std::vector<std::size_t> blocks;
  /// for(std::size_t i = 0ul; i <= 100ul; i += 10ul)
  ///   blocks.push_back(i);
  /// std::array<TiledArray::TiledRange1, 2> blocks2 =
  ///     {{ TiledArray::TiledRange1(blocks.begin(), blocks.end()),
  ///        TiledArray::TiledRange1(blocks.begin(), blocks.end()) }};
  /// TiledArray::TiledRange trange(blocks2.begin(), blocks2.end());
  ///
  /// // Create an Array from an Eigen matrix.
  /// TiledArray::Array<double, 2> array =
  ///     column_major_buffer_to_array<TiledArray::Array<double, 2> >(world, trange, buffer, 100, 100);
  ///
  /// delete [] buffer;
  /// \endcode
  /// \tparam A The array type
  /// \param world The world where the array will live
  /// \param trange The tiled range of the new array
  /// \param buffer The row-major matrix buffer to be copied
  /// \param m The number of rows in the matrix
  /// \param n The number of columns in the matrix
  /// \param replicated \c true indicates that the result array should be a
  /// replicated array [default = false].
  /// \return An \c Array object that is a copy of \c matrix
  /// \throw TiledArray::Exception When \c m and \c n are not equal to the
  /// number of rows or columns in tiled range.
  template <typename A>
  inline A column_major_buffer_to_array(World& world, const typename A::trange_type& trange,
      const typename A::value_type::value_type* buffer, const std::size_t m,
      const std::size_t n, const bool replicated = false)
  {
    TA_USER_ASSERT(trange.elements_range().extent_data()[0] == m,
        "TiledArray::eigen_to_array(): The number of rows in trange is not equal to m.");
    TA_USER_ASSERT(trange.elements_range().extent_data()[1] == n,
        "TiledArray::eigen_to_array(): The number of columns in trange is not equal to n.");

    typedef Eigen::Matrix<typename A::value_type::value_type, Eigen::Dynamic,
        Eigen::Dynamic, Eigen::ColMajor> matrix_type;
    return eigen_to_array(world, trange, Eigen::Map<const matrix_type,
        Eigen::AutoAlign>(buffer, m, n), replicated);
  }

} // namespace TiledArray

#endif // TILEDARRAY_EIGEN_H__INCLUDED