/usr/include/TiledArray/array_impl.h is in libtiledarray-dev 0.6.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | /*
* This file is a part of TiledArray.
* Copyright (C) 2014 Virginia Tech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Justus Calvin
* Department of Chemistry, Virginia Tech
*
* array_impl.h
* Oct 24, 2014
*
*/
#ifndef TILEDARRAY_ARRAY_IMPL_H__INCLUDED
#define TILEDARRAY_ARRAY_IMPL_H__INCLUDED
#include <TiledArray/tensor_impl.h>
#include <TiledArray/distributed_storage.h>
#include <TiledArray/transform_iterator.h>
#include <TiledArray/type_traits.h>
namespace TiledArray {
namespace detail {
// Forward declaration
template <typename> class TensorReference;
template <typename> class TensorConstReference;
template <typename, typename> class ArrayIiterator;
/// Tensor tile reference
/// \tparam Impl The TensorImpl type
template <typename Impl>
class TileReference {
private:
template <typename, typename>
friend class ArrayIiterator;
template <typename>
friend class TileConstReference;
typedef typename Impl::range_type range_type;
typedef typename Impl::range_type::index index_type;
typedef typename Impl::size_type ordinal_type;
Impl* tensor_; ///< The tensor that owns the referenced tile
ordinal_type index_; ///< The ordinal index of the tile
// Not allowed
TileReference<Impl>& operator=(const TileReference<Impl>&);
public:
TileReference(Impl* tensor, const typename Impl::size_type index) :
tensor_(tensor), index_(index)
{ }
TileReference(const TileReference<Impl>& other) :
tensor_(other.tensor_), index_(other.index_)
{ }
template <typename Value>
TileReference<Impl>& operator=(const Value& value) {
tensor_->set(index_, value);
return *this;
}
typename Impl::future future() const {
TA_ASSERT(tensor_);
return tensor_->get(index_);
}
typename Impl::value_type get() const {
// NOTE: return by value to avoid lifetime issues.
TA_ASSERT(tensor_);
return future().get();
}
operator typename Impl::future() const { return this->future(); }
operator typename Impl::value_type() const { return get(); }
/// Tile coordinate index accessor
/// \return The coordinate index of the current tile
index_type index() const {
TA_ASSERT(tensor_);
return tensor_->range().idx(index_);
}
/// Tile ordinal index accessor
/// \return The ordinal index of the current tile
ordinal_type ordinal() const {
return index_;
}
/// Tile range factory function
/// Construct a range object for the current tile
range_type make_range() const {
TA_ASSERT(tensor_);
return tensor_->trange().make_tile_range(index_);
}
}; // class TileReference
/// Tensor tile reference
/// \tparam Impl The TensorImpl type
template <typename Impl>
class TileConstReference {
private:
template <typename, typename>
friend class ArrayIiterator;
const Impl* tensor_; ///< The tensor that owns the referenced tile
typename Impl::size_type index_; ///< The index of the tensor
// Not allowed
TileConstReference<Impl>& operator=(const TileConstReference<Impl>&);
public:
TileConstReference(const Impl* tensor, const typename Impl::size_type index) :
tensor_(tensor), index_(index)
{ }
TileConstReference(const TileConstReference<Impl>& other) :
tensor_(other.tensor_), index_(other.index_)
{ }
TileConstReference(const TileReference<Impl>& other) :
tensor_(other.tensor_), index_(other.index_)
{ }
typename Impl::future future() const {
TA_ASSERT(tensor_);
return tensor_->get(index_);
}
typename Impl::value_type get() const {
// NOTE: return by value to avoid lifetime issues.
TA_ASSERT(tensor_);
return future().get();
}
operator typename Impl::future() const { return tensor_->get(index_); }
operator typename Impl::value_type() const { return get(); }
}; // class TileConstReference
} // namespace detail
} // namespace TiledArray
namespace madness {
namespace detail {
// The following class specializations are required so MADNESS will do the
// right thing when given a TileReference or TileConstReference object
// as an input for task functions.
template <typename Impl>
struct task_arg<TiledArray::detail::TileReference<Impl> > {
typedef typename Impl::value_type type;
typedef typename Impl::future holderT;
}; // struct task_arg<TiledArray::detail::TileReference<Impl> >
template <typename Impl>
struct task_arg<TiledArray::detail::TileConstReference<Impl> > {
typedef typename Impl::value_type type;
typedef typename Impl::future holderT;
}; // struct task_arg<TiledArray::detail::TileConstReference<Impl> >
} // namespace detail
} // namespace madness
namespace TiledArray {
namespace detail {
/// Distributed tensor iterator
/// This iterator will reference local tiles for a TensorImpl object. It can
/// be used to get or set futures to a tile, or access the coordinate and
/// ordinal index of the tile.
/// \tparam Impl The TensorImpl type
/// \tparam Reference The iterator reference type
template <typename Impl, typename Reference>
class ArrayIiterator {
private:
// Give access to other iterator types.
template <typename, typename>
friend class ArrayIiterator;
Impl* array_;
typename Impl::pmap_interface::const_iterator it_;
public:
typedef ptrdiff_t difference_type; ///< Difference type
typedef typename Impl::future value_type; ///< Iterator dereference value type
typedef PointerProxy<value_type> pointer; ///< Pointer type to iterator value
typedef Reference reference; ///< Reference type to iterator value
typedef std::forward_iterator_tag iterator_category; ///< Iterator category type
typedef ArrayIiterator<Impl, Reference> ArrayIterator_; ///< This object type
typedef typename Impl::range_type::index index_type;
typedef typename Impl::size_type ordinal_type;
typedef typename Impl::range_type range_type;
typedef typename Impl::value_type tile_type;
private:
void advance() {
TA_ASSERT(array_);
const typename Impl::pmap_interface::const_iterator end =
array_->pmap()->end();
do {
++it_;
} while((it_ != end) && array_->is_zero(*it_));
}
public:
/// Default constructor
ArrayIiterator() : array_(NULL), it_() { }
/// Constructor
ArrayIiterator(Impl* tensor, typename Impl::pmap_interface::const_iterator it) :
array_(tensor), it_(it)
{ }
/// Copy constructor
/// \param other The transform iterator to copy
ArrayIiterator(const ArrayIterator_& other) :
array_(other.array_), it_(other.it_)
{ }
/// Copy const iterator constructor
/// \tparam R Iterator reference type
/// \param other The transform iterator to copy
template <typename I, typename R,
typename std::enable_if<
!((! std::is_const<Impl>::value) &&
std::is_const<I>::value)
>::type* = nullptr>
ArrayIiterator(const ArrayIiterator<I, R>& other) :
array_(other.array_), it_(other.it_)
{ }
/// Copy operator
/// \param other The transform iterator to copy
/// \return A reference to this object
ArrayIterator_& operator=(const ArrayIterator_& other) {
array_ = other.array_;
it_ = other.it_;
return *this;
}
/// Copy operator
/// \tparam R Iterator reference type
/// \param other The transform iterator to copy
/// \return A reference to this object
template <typename R>
ArrayIterator_& operator=(const ArrayIiterator<Impl, R>& other) {
array_ = other.array_;
it_ = other.it_;
return *this;
}
/// Prefix increment operator
/// \return A reference to this object after it has been incremented.
ArrayIterator_& operator++() {
advance();
return *this;
}
/// Post-fix increment operator
/// \return A copy of this object before it is incremented.
ArrayIterator_ operator++(int) {
ArrayIterator_ tmp(*this);
advance();
return tmp;
}
/// Equality operator
/// \tparam R Iterator reference type
/// \param other The iterator to compare to this iterator.
/// \return \c true when the iterators are equal to each other, otherwise
/// \c false.
template <typename I, typename R>
bool operator==(const ArrayIiterator<I, R>& other) const {
return (array_ == other.array_) && (it_ == other.it_);
}
/// Inequality operator
/// \tparam R Iterator reference type
/// \param other The iterator to compare to this iterator.
/// \return \c true when the iterators are not equal to each other,
/// otherwise \c false.
template <typename I, typename R>
bool operator!=(const ArrayIiterator<I, R>& other) const {
return (array_ != other.array_) || (it_ != other.it_);
}
/// Dereference operator
/// \return A referenc to the current tile future.
reference operator*() const {
TA_ASSERT(array_);
return reference(array_, *it_);
}
/// Arrow dereference operator
/// \return A pointer-proxy to the current tile
pointer operator->() const {
TA_ASSERT(array_);
return pointer(array_->get(*it_));
}
/// Tile coordinate index accessor
/// \return The coordinate index of the current tile
index_type index() const {
TA_ASSERT(array_);
return array_->range().idx(*it_);
}
/// Tile ordinal index accessor
/// \return The ordinal index of the current tile
ordinal_type ordinal() const {
TA_ASSERT(array_);
return *it_;
}
/// Tile range factory function
/// Construct a range object for the current tile
range_type make_range() const {
TA_ASSERT(array_);
TA_ASSERT(it_ != array_->pmap()->end());
return array_->trange().make_tile_range(*it_);
}
}; // class TensorIterator
/// Tensor implementation and base for other tensor implementation objects
/// This implementation object holds the data for tensor object, which
/// includes tiled range, shape, and tiles. The tiles are held in a
/// distributed container, stored according to a given process map.
/// \tparam Tile The tile or value_type of this tensor
/// \note The process map must be set before data elements can be set.
/// \note It is the users responsibility to ensure the process maps on all
/// nodes are identical.
template <typename Tile, typename Policy>
class ArrayImpl : public TensorImpl<Policy> {
public:
typedef ArrayImpl<Tile, Policy> ArrayImpl_; ///< This object type
typedef TensorImpl<Policy> TensorImpl_; ///< The base class of this object
typedef typename TensorImpl_::size_type size_type; ///< Size type
typedef typename TensorImpl_::trange_type trange_type; ///< Tiled range type for this object
typedef typename TensorImpl_::range_type range_type; ///< Range type this tensor
typedef typename TensorImpl_::shape_type shape_type; ///< Shape type
typedef typename TensorImpl_::pmap_interface pmap_interface; ///< process map interface type
typedef Tile value_type; ///< Tile or data type
typedef typename eval_trait<Tile>::type eval_type; ///< The tile evaluation type
typedef typename numeric_type<value_type>::type
numeric_type; ///< the numeric type that supports Tile
typedef DistributedStorage<value_type> storage_type; ///< The data container type
typedef typename storage_type::future future; ///< Future tile type
typedef TileReference<ArrayImpl_> reference; ///< Tile reference type
typedef TileConstReference<ArrayImpl_> const_reference; ///< Tile constant reference type
typedef ArrayIiterator<ArrayImpl_, reference> iterator; ///< Iterator type
typedef ArrayIiterator<const ArrayImpl_, const_reference> const_iterator; ///< Constant iterator type
private:
storage_type data_; ///< Tile container
public:
/// Constructor
/// The size of shape must be equal to the volume of the tiled range tiles.
/// \param world The world where this tensor will live
/// \param trange The tiled range for this tensor
/// \param shape The shape of this tensor
/// \param pmap The tile-process map
/// \throw TiledArray::Exception When the size of shape is not equal to
/// zero
ArrayImpl(World& world, const trange_type& trange, const shape_type& shape,
const std::shared_ptr<pmap_interface>& pmap) :
TensorImpl_(world, trange, shape, pmap),
data_(world, trange.tiles_range().volume(), pmap)
{ }
/// Virtual destructor
virtual ~ArrayImpl() { }
/// Tile future accessor
/// \tparam Index The index type
/// \param i The tile index
/// \return A \c future to tile \c i
/// \throw TiledArray::Exception When tile \c i is zero
template <typename Index>
future get(const Index& i) const {
TA_ASSERT(! TensorImpl_::is_zero(i));
return data_.get(TensorImpl_::trange().tiles_range().ordinal(i));
}
/// Tile future accessor
/// \tparam Integer An integer type
/// \param i The tile index, as an \c std::initializer_list<Integer>
/// \return A \c future to tile \c i
/// \throw TiledArray::Exception When tile \c i is zero
template <typename Integer>
future get(const std::initializer_list<Integer>& i) const {
return get<std::initializer_list<Integer>>(i);
}
/// Set tile
/// Set the tile at \c i with \c value . \c Value type may be \c value_type ,
/// \c Future<value_type> , or
/// \c madness::detail::MoveWrapper<value_type> .
/// \tparam Index The index type
/// \tparam Value The value type
/// \param i The index of the tile to be set
/// \param value The object tat contains the tile value
template <typename Index, typename Value>
void set(const Index& i, const Value& value) {
TA_ASSERT(! TensorImpl_::is_zero(i));
data_.set(TensorImpl_::trange().tiles_range().ordinal(i), value);
}
/// Array begin iterator
/// \return A const iterator to the first element of the array.
iterator begin() {
// Get the pmap iterator
typename pmap_interface::const_iterator it = TensorImpl_::pmap()->begin();
// Find the fist non-zero iterator
const typename pmap_interface::const_iterator end = TensorImpl_::pmap()->end();
while((it != end) && TensorImpl_::is_zero(*it)) ++it;
// Construct and return the iterator
return iterator(this, it);
}
/// Array begin iterator
/// \return A const iterator to the first element of the array.
const_iterator cbegin() const {
// Get the pmap iterator
typename pmap_interface::const_iterator it = TensorImpl_::pmap()->begin();
// Find the fist non-zero iterator
const typename pmap_interface::const_iterator end = TensorImpl_::pmap()->end();
while((it != end) && TensorImpl_::is_zero(*it)) ++it;
// Construct and return the iterator
return const_iterator(this, it);
}
/// Array end iterator
/// \return A const iterator to one past the last element of the array.
iterator end() {
return iterator(this, TensorImpl_::pmap()->end());
}
/// Array end iterator
/// \return A const iterator to one past the last element of the array.
const_iterator cend() const {
return const_iterator(this, TensorImpl_::pmap()->end());
}
/// Unique object id accessor
/// \return A const reference to this object unique id
const madness::uniqueidT& id() const { return data_.id(); }
}; // class ArrayImpl
#ifndef TILEDARRAY_HEADER_ONLY
extern template
class ArrayImpl<Tensor<double, Eigen::aligned_allocator<double> >, DensePolicy>;
extern template
class ArrayImpl<Tensor<float, Eigen::aligned_allocator<float> >, DensePolicy>;
extern template
class ArrayImpl<Tensor<int, Eigen::aligned_allocator<int> >, DensePolicy>;
extern template
class ArrayImpl<Tensor<long, Eigen::aligned_allocator<long> >, DensePolicy>;
// extern template
// class ArrayImpl<Tensor<std::complex<double>, Eigen::aligned_allocator<std::complex<double> > >, DensePolicy>;
// extern template
// class ArrayImpl<Tensor<std::complex<float>, Eigen::aligned_allocator<std::complex<float> > >, DensePolicy>;
extern template
class ArrayImpl<Tensor<double, Eigen::aligned_allocator<double> >, SparsePolicy>;
extern template
class ArrayImpl<Tensor<float, Eigen::aligned_allocator<float> >, SparsePolicy>;
extern template
class ArrayImpl<Tensor<int, Eigen::aligned_allocator<int> >, SparsePolicy>;
extern template
class ArrayImpl<Tensor<long, Eigen::aligned_allocator<long> >, SparsePolicy>;
// extern template
// class ArrayImpl<Tensor<std::complex<double>, Eigen::aligned_allocator<std::complex<double> > >, SparsePolicy>;
// extern template
// class ArrayImpl<Tensor<std::complex<float>, Eigen::aligned_allocator<std::complex<float> > >, SparsePolicy>;
#endif // TILEDARRAY_HEADER_ONLY
} // namespace detail
} // namespace TiledArray
#endif // TILEDARRAY_ARRAY_IMPL_H__INCLUDED
|