/usr/include/ThePEG/Utilities/SimplePhaseSpace.h is in libthepeg-dev 1.8.0-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | // -*- C++ -*-
//
// SimplePhaseSpace.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_SimplePhaseSpace_H
#define ThePEG_SimplePhaseSpace_H
#include "ThePEG/Config/ThePEG.h"
#include "ThePEG/Vectors/LorentzRotation.h"
#include "ThePEG/Vectors/LorentzRotation.h"
#include "ThePEG/EventRecord/Particle.h"
#include "ThePEG/EventRecord/ParticleTraits.h"
#include "ThePEG/Repository/UseRandom.h"
#include "SimplePhaseSpace.xh"
#include <numeric>
namespace ThePEG {
/**
* SimplePhaseSpace defines a set of static functions to be used for
* distributing momenta evenly in phase space. In most cases pointers
* and references to both particle and momentum objects can be used as
* arguments as long as the ParticleTraits class is specialized
* properly. When needed, random numbers are generated with the
* generator given by the static UseRandom class.
*/
struct SimplePhaseSpace {
/**
* Set two momenta in their center of mass system. Their total
* invariant mass squared is given by s, and their direction is
* distributed isotropically.
* @param s the total invariant mass squared.
* @param p1 pointer or reference to the first momentum. Its
* invariant mass will be preserved.
* @param p2 pointer or reference to the second momentum. Its
* invariant mass will be preserved.
* @throw ImpossibleKinematics if the sum of the invariant masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
template <typename PType>
static void CMS(Energy2 s, PType & p1, PType & p2);
/**
* Set two momenta in their center of mass system. Their total
* invariant mass squared is given by s, and their direction is
* given in terms of the polar and azimuth angle of the first
* momenta.
* @param s the total invariant mass squared.
* @param p1 pointer or reference to the first momentum. Its
* invariant mass will be preserved.
* @param p2 pointer or reference to the second momentum. Its
* invariant mass will be preserved.
* @param cosTheta cosine of the azimuth angle of the first momentum.
* @param phi azimuth angle of the first momentum.
* @throw ImpossibleKinematics if the sum of the invariant masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
template <typename PType>
static void CMS(PType & p1, PType & p2, Energy2 s,
double cosTheta, double phi);
/**
* Set two momenta in their center of mass system. Their total
* invariant mass squared is given by s. The helper momentum p0 is
* used so that afterwards \f$t=(p0-p1)^2\f$ and p1 has the azimuth
* angle phi around p0.
* @param p1 pointer or reference to the first momentum. Its
* invariant mass will be preserved.
* @param p2 pointer or reference to the second momentum. Its
* invariant mass will be preserved.
* @param s the total invariant mass squared.
* @param t \f$=(p0-p1)^2\f$.
* @param phi azimuth angle of the first momentum around p0.
* @param p0 pointer or reference to an auxiliary momentum.
* @throw ImpossibleKinematics if the sum of the invariant masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
template <typename PType>
static void CMS(PType & p1, PType & p2, Energy2 s, Energy2 t, double phi,
const PType & p0);
/**
* Set two momenta in their center of mass system. Their total
* invariant mass squared is given by s. p1 will be along the z-axis.
* @param p1 pointer or reference to the first momentum. Its
* invariant mass will be preserved.
* @param p2 pointer or reference to the second momentum. Its
* invariant mass will be preserved.
* @param s the total invariant mass squared.
* @throw ImpossibleKinematics if the sum of the invariant masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
template <typename PType>
static void CMS(PType & p1, PType & p2, Energy2 s);
/**
* Set two momenta in their center of mass system. Their total
* invariant mass squared is given by s. The first will be along the
* z-axis.
* @param p a pair of pointers or references to the two momenta. Their
* invariant masses will be preserved.
* @param s the total invariant mass squared.
* @throw ImpossibleKinematics if the sum of the invariant masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
template <typename PPairType>
static void CMS(const PPairType & p, Energy2 s)
{
CMS(*p.first, *p.second, s);
}
/**
* Set three momenta in their center of mass system. Their total
* invariant mass squared is given by s. The energy fraction of
* particle p1(3) is x1(3) of the total energy and the angles of the
* system is distributed isotropically.
* @param p1 pointer or reference to the first momentum. Its
* invariant mass will be preserved.
* @param p2 pointer or reference to the second momentum. Its
* invariant mass will be preserved.
* @param p3 pointer or reference to the second momentum. Its
* invariant mass will be preserved.
* @param s the total invariant mass squared.
* @param x1 the energy fraction \f$2e_1/\sqrt{s}\f$.
* @param x3 the energy fraction \f$2e_3/\sqrt{s}\f$.
* @throw ImpossibleKinematics if the sum of the invariant masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
template <typename PType>
static void CMS(PType & p1, PType & p2, PType & p3, Energy2 s,
double x1, double x3);
/**
* Set three momenta in their center of mass system. Their total
* invariant mass squared is given by s. The energy fraction of
* particle p1(3) is x1(3) of the total energy. Particle p1 is
* initially placed along the z-axis and particle p2 is given
* azimuth angle phii. Then the system is then rotated with
* theta and phi respectively.
* @param p1 pointer or reference to the first momentum. Its
* invariant mass will be preserved.
* @param p2 pointer or reference to the second momentum. Its
* invariant mass will be preserved.
* @param p3 pointer or reference to the second momentum. Its
* invariant mass will be preserved.
* @param s the total invariant mass squared.
* @param x1 the energy fraction \f$2e_1/\sqrt{s}\f$.
* @param x3 the energy fraction \f$2e_3/\sqrt{s}\f$.
* @param phii the azimuth angle of p2 around p1.
* @param theta the polar angle of p1.
* @param phi the azimuth angle of p1.
* @throw ImpossibleKinematics if the sum of the invariant masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
template <typename PType>
static void CMS(PType & p1, PType & p2, PType & p3, Energy2 s,
double x1, double x3, double phii = 0.0,
double theta = 0.0, double phi = 0.0);
/**
* Calculate the absolute magnitude of the momenta of two particles
* with masses m1 and m2 when put in their CMS of total invariant
* mass squared s.
* @param s the total invariant mass squared.
* @param m1 the mass of particle 1.
* @param m2 the mass of particle 2.
* @throw ImpossibleKinematics if the sum of the masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
static Energy getMagnitude(Energy2 s, Energy m1, Energy m2);
/**
* Return a three-vector given the absolute momentum, cos(theta) and
* phi.
* @param p the magnitude of the momentum.
* @param costheta the cosine of the polar angle.
* @param phi the azimuth angle.
*/
static Momentum3 polar3Vector(Energy p, double costheta, double phi)
{
return Momentum3(p*sqrt(1.0 - sqr(costheta))*sin(phi),
p*sqrt(1.0 - sqr(costheta))*cos(phi),
p*costheta);
}
/**
* Get a number of randomly distributed momenta.
* Given a number specified invariant masses and a
* total invariant mass m0, return corresponding four-momenta
* randomly distributed according to phase space.
* @param m0 the
* total invariant mass of the resulting momenta.
* @param m a vector
* of invariant masses of the resulting momenta.
* @return a vector
* of momenta with the given masses randomly distributed.
* @throw ImpossibleKinematics if the sum of the masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
static vector<LorentzMomentum>
CMSn(Energy m0, const vector<Energy> & m);
/**
* Set the momentum of a number of particles. Given a number of
* particles and a total invariant mass m0, distribute their
* four-momenta randomly according to phase space.
* @param particles a container of particles or pointers to
* particles. The invariant mass of these particles will not be
* chaned.
* @param m0 the
* total invariant mass of the resulting momenta.
* @throw ImpossibleKinematics if the sum of the masses was
* larger than the given invariant mass (\f$\sqrt{s}\f$).
*/
template <typename Container>
static void CMSn(Container & particles, Energy m0);
};
}
#ifndef ThePEG_TEMPLATES_IN_CC_FILE
#include "SimplePhaseSpace.tcc"
#endif
#endif /* ThePEG_SimplePhaseSpace_H */
|