This file is indexed.

/usr/include/ThePEG/PDF/UnResolvedRemnant.h is in libthepeg-dev 1.8.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// -*- C++ -*-
//
// UnResolvedRemnant.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_UnResolvedRemnant_H
#define ThePEG_UnResolvedRemnant_H

#include "ThePEG/PDF/RemnantHandler.h"

namespace ThePEG {

/**
 * UnResolvedRemnant inherits from the RemnantHandler and implements
 * the generation of either the incoming particle as the remnant
 * with the emission of a photon, pomeron or reggeon, or
 * a photon remnant for the particle entering the hard process.
 *
 * @see \ref UnResolvedRemnantInterfaces "The interfaces"
 * defined for UnResolvedRemnant.
 * @see UnResolvedPDF
 */
class UnResolvedRemnant: public RemnantHandler {

public:

  /** @name Standard constructors and destructors. */
  //@{
  /**
   * Default constructor.
   */
  UnResolvedRemnant();
  //@}

public:

  /** @name Virtual functions mandated by the RemnantHandler base class. */
  //@{
  /**
   * Return true if this remnant handler can handle extracting all
   * specified \a partons form the given \a particle.
   */
  virtual bool canHandle(tcPDPtr particle, const cPDVector & partons) const;

  /**
   * If the generation of remnants is expected to influence the actual
   * cross section of the hard sub process, the degrees of freedom
   * generated by this remnant handler may be included in the general
   * phase space sampling for the subprocess. In this case this
   * function should be overridden to return the number of degrees of
   * freedom used in the generation. If \a doScale is false, it means
   * that the actual virtuality of the extracted parton will be
   * obtained from another source.
   */
  virtual int nDim(const PartonBin & pb, bool doScale) const;

  /**
   * Redo the remnant generation for the given particle bin, \a pb. If
   * \a oldp is non-null it corresponds to the previously extracted
   * parton which should be replaced by \a newp. If \a oldp is null it
   * means \a newp should be extracted in addition to the previously
   * extracted ones available in \a prev. 
   * @return false if the generation failed.
   */
  virtual bool recreateRemnants(PartonBinInstance & pb, tPPtr oldp, tPPtr newp,
				double newl, Energy2 scale,
				const LorentzMomentum & p,
				const PVector & prev = PVector()) const;
  /**
   * Redo the remnant generation for the given particle bin, \a pb. If
   * \a oldp is non-null it corresponds to the previously extracted
   * parton which should be replaced by \a newp. If \a oldp is null it
   * means \a newp should be extracted in addition to the previously
   * extracted ones available in \a prev. In either case \a shat is
   * the total invariant mass squared of the hard sub-system produced
   * by the extracted parton and the primary parton entering from the other
   * side. 
   *
   * @return false if the generation failed.
   */
  virtual bool recreateRemnants(PartonBinInstance & pb, tPPtr oldp, tPPtr newp,
				double newl, Energy2 scale,
				Energy2 shat, const LorentzMomentum & p,
				const PVector & prev = PVector()) const;

  /**
   * Generate momenta. Generates the momenta of the extracted parton
   * in the particle cms (but with the parton \f$x\f$ still the
   * positive light-cone fraction) as given by the last argument, \a
   * p. If the particle is space-like the positive and negative
   * light-cone momenta are \f$\sqrt{-m^2}\f$ and \f$-sqrt{-m^2}\f$
   * respectively. If the \a scale is negative, it means that the \a
   * doScale in the previous call to nDim() was true, otherwise the
   * given scale should be the virtuality of the extracted
   * parton. Generated quantities which are not returned in the
   * momentum may be saved in the PartonBin, \a pb, for later use. In
   * particular, if the nDim() random numbers, \a r, are not enough to
   * generate with weight one, the resulting weight should be stored
   * with the remnantWeight() method of the parton bin.
   */
  virtual Lorentz5Momentum generate(PartonBinInstance & pb, const double * r,
				    Energy2 scale,
				    const LorentzMomentum & p,
				    bool fixedPartonMomentum = false) const;

  /**
   * Generate the momentum of the extracted parton with the \a parent
   * momentum given by the last argument. If the \a scale is negative,
   * it means that the doScale in the previous call to nDim() was
   * true, otherwise the given \a scale should be the virtuality of
   * the extracted parton. \a shat is the total invariant mass squared
   * of the hard sub-system produced by the extracted parton and the
   * primary parton entering from the other side. Generated quantities
   * which are not returned in the momentum may be saved in the
   * PartonBinInstance, \a pb, for later use. In particular, if the
   * nDim() random numbers, \a r, are not enough to generate with
   * weight one, the resulting weight should be stored with the
   * remnantWeight() method of the parton bin.
   */
  virtual Lorentz5Momentum generate(PartonBinInstance & pb, const double * r,
				    Energy2 scale, Energy2 shat,
				    const LorentzMomentum & parent,
				    bool fixedPartonMomentum = false) const;
  //@}

public:

  /** @name Functions used by the persistent I/O system. */
  //@{
  /**
   * Function used to write out object persistently.
   * @param os the persistent output stream written to.
   */
  void persistentOutput(PersistentOStream & os) const;

  /**
   * Function used to read in object persistently.
   * @param is the persistent input stream read from.
   * @param version the version number of the object when written.
   */
  void persistentInput(PersistentIStream & is, int version);
  //@}

  /**
   * Standard Init function used to initialize the interface.
   */
  static void Init();

protected:

  /** @name Clone Methods. */
  //@{
  /**
   * Make a simple clone of this object.
   * @return a pointer to the new object.
   */
  virtual IBPtr clone() const;

  /** Make a clone of this object, possibly modifying the cloned object
   * to make it sane.
   * @return a pointer to the new object.
   */
  virtual IBPtr fullclone() const;
  //@}

  /** @name Standard Interfaced functions. */
  //@{
  /**
   * Initialize this object after the setup phase before saving an
   * EventGenerator to disk.
   * @throws InitException if object could not be initialized properly.
   */
  virtual void doinit();
  //@}

private:

  /**
   * The minimum energy fraction allowed for a photon remnant.
   */
  double minX;

  /**
   * Easy access to a photon data object.
   */
  tPDPtr thePhoton;

private:

  /**
   * Describe a concrete class with persistent data.
   */
  static ClassDescription<UnResolvedRemnant> initUnResolvedRemnant;

  /**
   *  Private and non-existent assignment operator.
   */
  UnResolvedRemnant & operator=(const UnResolvedRemnant &);

};

/** @cond TRAITSPECIALIZATIONS */

/** This template specialization informs ThePEG about the
 *  base classes of UnResolvedRemnant. */
template <>
struct BaseClassTrait<UnResolvedRemnant,1>: public ClassTraitsType {
  /** Typedef of the first base class of UnResolvedRemnant. */
  typedef RemnantHandler NthBase;
};

/** This template specialization informs ThePEG about the name of the
 *  UnResolvedRemnant class and the shared object where it is
 *  defined. */
template <>
struct ClassTraits<UnResolvedRemnant>:
    public ClassTraitsBase<UnResolvedRemnant> {
  /** Return a platform-independent class name */
  static string className() { return "ThePEG::UnResolvedRemnant"; }
  /** Return the name of the shared library be loaded to get access to
   *  the UnResolvedRemnant class and every other class it uses
   *  (except the base class). */
  static string library() { return "UnResolvedRemnant.so"; }
};

/** @endcond */

}

#endif /* ThePEG_UnResolvedRemnant_H */