This file is indexed.

/usr/include/ThePEG/MatrixElement/MEGroup.h is in libthepeg-dev 1.8.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
// -*- C++ -*-
//
// MEGroup.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2007 Leif Lonnblad
// Copyright (C) 2009-2010 Simon Platzer
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ThePEG_MEGroup_H
#define ThePEG_MEGroup_H
// This is the declaration of the MEGroup class.

#include "ThePEG/MatrixElement/MEBase.h"
#include "ThePEG/Handlers/StdDependentXComb.fh"
#include "ThePEG/Cuts/Cuts.fh"
#include "MEGroup.fh"

namespace ThePEG {

/**
 * The MEGroup class represents a 'head' matrix element
 * in association with a group of dependent matrix elements.
 * It basically acts as a wrapper around its head matrix element
 * however supplying additional information to the corresponding
 * StdXCombGroup object.
 *
 * @see StdXCombGroup
 * @see StdDependentXComb
 * 
 */
class MEGroup: public MEBase {

public:

  /** @name Standard constructors and destructors. */
  //@{
  /**
   * Default constructor.
   */
  MEGroup();

  /**
   * Destructor.
   */
  virtual ~MEGroup();
  //@}

public:

  /** @name Virtual functions from MEBase. */
  //@{
  /**
   * Return the order in \f$\alpha_S\f$ in which this matrix element
   * is given.
   */
  virtual unsigned int orderInAlphaS() const { return head()->orderInAlphaS(); }

  /**
   * Return the order in \f$\alpha_{EM}\f$ in which this matrix
   * element is given. Returns 0.
   */
  virtual unsigned int orderInAlphaEW() const { return head()->orderInAlphaEW(); }

  /**
   * Return the matrix element for the kinematical configuation
   * previously provided by the last call to setKinematics(), suitably
   * scaled by sHat() to give a dimension-less number.
   */
  virtual double me2() const { return head()->me2(); }

  /**
   * Return the scale associated with the phase space point provided
   * by the last call to setKinematics().
   */
  virtual Energy2 scale() const { return head()->scale(); }

  /**
   * Return the value of \f$\alpha_S\f$ associated with the phase
   * space point provided by the last call to setKinematics(). This
   * versions returns SM().alphaS(scale()).
   */
  virtual double alphaS() const { return head()->alphaS(); }

  /**
   * Return the value of \f$\alpha_EM\f$ associated with the phase
   * space point provided by the last call to setKinematics(). This
   * versions returns SM().alphaEM(scale()).
   */
  virtual double alphaEM() const { return head()->alphaEM(); }

  /**
   * Set the typed and momenta of the incoming and outgoing partons to
   * be used in subsequent calls to me() and colourGeometries()
   * according to the associated XComb object. If the function is
   * overridden in a sub class the new function must call the base
   * class one first.
   */
  virtual void setKinematics();

  /**
   * construct the spin information for the interaction
   */
  virtual void constructVertex(tSubProPtr sub) { head()->constructVertex(sub); }

  /**
   * The number of internal degreed of freedom used in the matrix
   * element. This default version returns 0;
   */
  virtual int nDim() const { return theNDim; }

  /**
   * Generate internal degrees of freedom given nDim() uniform random
   * numbers in the interval ]0,1[. To help the phase space generator,
   * the 'dSigHatDR' should be a smooth function of these numbers,
   * although this is not strictly necessary. The return value should
   * be true of the generation succeeded. If so the generated momenta
   * should be stored in the meMomenta() vector.
   */
  virtual bool generateKinematics(const double * r);

  /**
   * Return true, if this matrix element expects
   * the incoming partons in their center-of-mass system
   */
  virtual bool wantCMS () const { return head()->wantCMS(); }

  /**
   * Return the matrix element squared differential in the variables
   * given by the last call to generateKinematics().
   */
  virtual CrossSection dSigHatDR() const { return head()->dSigHatDR(); }

  /**
   * Return true, if this matrix element will generate momenta for the
   * incoming partons itself.  The matrix element is required to store
   * the incoming parton momenta in meMomenta()[0,1]. No mapping in
   * tau and y is performed by the PartonExtractor object, if a
   * derived class returns true here. The phase space jacobian is to
   * include a factor 1/(x1 x2).
   */
  virtual bool haveX1X2() const { return head()->haveX1X2(); }

  /**
   * Return true, if this matrix element provides the PDF
   * weight for the first incoming parton itself.
   */
  virtual bool havePDFWeight1 () const { return head()->havePDFWeight1(); }

  /**
   * Return true, if this matrix element provides the PDF
   * weight for the second incoming parton itself.
   */
  virtual bool havePDFWeight2 () const { return head()->havePDFWeight2(); }

  /**
   * Return true, if the XComb steering this matrix element
   * should keep track of the random numbers used to generate
   * the last phase space point
   */
  virtual bool keepRandomNumbers() const { return head()->keepRandomNumbers(); }

  /**
   * Comlete a SubProcess object using the internal degrees of freedom
   * generated in the last generateKinematics() (and possible other
   * degrees of freedom which was intergated over in dSigHatDR(). This
   * default version does nothing. Will be made purely virtual in the
   * future.
   */
  virtual void generateSubCollision(SubProcess & sub) { head()->generateSubCollision(sub); }

  /**
   * Clear the information previously provided by a call to
   * setKinematics(...).
   */
  virtual void clearKinematics();

  /**
   * Add all possible diagrams with the add() function.
   */
  virtual void getDiagrams() const {
    head()->diagrams();
    useDiagrams(head());
  }

  /**
   * Return true, if this matrix element does not want to
   * make use of mirroring processes; in this case all
   * possible partonic subprocesses with a fixed assignment
   * of incoming particles need to be provided through the diagrams
   * added with the add(...) method.
   */
  virtual bool noMirror () const { return head()->noMirror(); }

  /**
   * Return a Selector with possible colour geometries for the selected
   * diagram weighted by their relative probabilities.
   */
  virtual Selector<const ColourLines *>
  colourGeometries(tcDiagPtr diag) const { return head()->colourGeometries(diag); }

  /**
   * Select a ColpurLines geometry. The default version returns a
   * colour geometry selected among the ones returned from
   * colourGeometries(tcDiagPtr).
   */
  virtual const ColourLines &
  selectColourGeometry(tcDiagPtr diag) const { return head()->selectColourGeometry(diag); }

  /**
   * With the information previously supplied with the
   * setKinematics(...) method, a derived class may optionally
   * override this method to weight the given diagrams with their
   * (although certainly not physical) relative probabilities.
   */
  virtual Selector<DiagramIndex> diagrams(const DiagramVector & dv) const  { 
    return head()->diagrams(dv); 
  }

  /**
   * Select a diagram. Default version uses diagrams(const
   * DiagramVector &) to select a diagram according to the
   * weights. This is the only method used that should be outside of
   * MEBase.
   */
  virtual DiagramIndex diagram(const DiagramVector & dv) const {
    DiagramIndex res = head()->diagram(dv); 
    return res;
  }

  /**
   * Set the XComb object to be used in the next call to
   * generateKinematics() and dSigHatDR().
   */
  virtual void setXComb(tStdXCombPtr);

  /**
   * Inform this matrix element that a new phase space
   * point is about to be generated, so all caches should
   * be flushed.
   */
  virtual void flushCaches();

  /**
   * Collect information on the last evaluated phasespace
   * point for verification or debugging purposes. This
   * only called, if the StdXCombGroup did accumulate
   * a non-zero cross section from this ME group.
   */
  virtual void lastEventStatistics() {}
  //@}

public:

  /**
   * Return the head matrix element.
   */
  tMEPtr head() const { return theHead; }

  /**
   * Visit the dependent matrix elements
   */
  const MEVector& dependent() const { return theDependent; }

  /**
   * Set the head matrix element.
   */
  void head(tMEPtr me) { theHead = me; }

  /**
   * Access the dependent matrix elements
   */
  MEVector& dependent() { return theDependent; }

  /**
   * Return the random number offset to access the random
   * numbers provided for the given matrix element to generate
   * dependent kinematics.
   */
  int dependentOffset(tMEPtr dep) const;

  /**
   * Create an StdDependentXComb object to be used
   * for the given process steered bythe head object and 
   * dependent matrix element.
   */
  StdDependentXCombPtr makeDependentXComb (tStdXCombPtr xcHead,
					   const cPDVector& proc,
					   tMEPtr depME,
					   const PartonPairVec& allPBins) const;

  /**
   * Return true, if SubProcessGroups should be
   * setup from this MEGroup. If not, a single SubProcess
   * is constructed from the data provided by the
   * head matrix element.
   */
  virtual bool subProcessGroups() const { return true; }

  /**
   * Return true for MC summation of dependent
   * matrix elements, if feasible.
   */
  virtual bool mcSumDependent() const { return false; }

  /**
   * Return a pointer to the dependent xcomb object selected
   * if mcSumDependent returned true.
   */
  tStdDependentXCombPtr lastDependentXComb() const { return theLastDependentXComb; }

protected:

  /**
   * Set a pointer to the dependent xcomb object selected
   * if mcSumDependent returned true.
   */
  void lastDependentXComb(tStdDependentXCombPtr xc) { theLastDependentXComb = xc; }

public:

  /**
   * Return true, if the same additional random numbers
   * should be presented to any of the dependent
   * matrix elements.
   */
  virtual bool uniformAdditional() const = 0;

  /**
   * Given a process from the head matrix element,
   * return a list of diagrams which should be considered for
   * the given dependent matrix element.
   */
  virtual MEBase::DiagramVector dependentDiagrams (const cPDVector& proc,
						   tMEPtr depME) const = 0;

public:

  /** @name Functions used by the persistent I/O system. */
  //@{
  /**
   * Function used to write out object persistently.
   * @param os the persistent output stream written to.
   */
  void persistentOutput(PersistentOStream & os) const;

  /**
   * Function used to read in object persistently.
   * @param is the persistent input stream read from.
   * @param version the version number of the object when written.
   */
  void persistentInput(PersistentIStream & is, int version);
  //@}

  /**
   * Standard Init function used to initialize the interfaces.
   */
  static void Init();

protected:

  /** @name Standard Interfaced functions. */
  //@{
  /**
   * Initialize this object after the setup phase before saving an
   * EventGenerator to disk.
   * @throws InitException if object could not be initialized properly.
   */
  virtual void doinit();

  /**
   * Rebind pointer to other Interfaced objects. Called in the setup phase
   * after all objects used in an EventGenerator has been cloned so that
   * the pointers will refer to the cloned objects afterwards.
   * @param trans a TranslationMap relating the original objects to
   * their respective clones.
   * @throws RebindException if no cloned object was found for a given
   * pointer.
   */
  virtual void rebind(const TranslationMap & trans);

  /**
   * Return a vector of all pointers to Interfaced objects used in this
   * object.
   * @return a vector of pointers.
   */
  virtual IVector getReferences();
  //@}

private:

  /**
   * The head matrix element.
   */
  MEPtr theHead;

  /**
   * The dependent matrix elements.
   */
  MEVector theDependent;

  /**
   * Offsets to access additional random numbers
   * required by the dependent matrix elements.
   */
  map<tMEPtr,int> theNDimMap;

  /**
   * The total number of random numbers required.
   */
  int theNDim;

  /**
   * A pointer to the dependent xcomb object selected
   * if mcSumDependent returned true.
   */
  tStdDependentXCombPtr theLastDependentXComb;

private:

  /**
   * Describe a class with persistent data.
   */
  static AbstractClassDescription<MEGroup> initMEGroup;

  /**
   *  Private and non-existent assignment operator.
   */
  MEGroup & operator=(const MEGroup &);

};

}


namespace ThePEG {

/** @cond TRAITSPECIALIZATIONS */

/**
 * This template specialization informs ThePEG about the base class of
 * MEGroup.
 */
template <>
struct BaseClassTrait<MEGroup,1> {
  /** Typedef of the base class of MEGroup. */
  typedef MEBase NthBase;
};

/**
 * This template specialization informs ThePEG about the name of the
 * MEGroup class.
 */
template <>
struct ClassTraits<MEGroup>: public ClassTraitsBase<MEGroup> {
  /** Return the class name. */
  static string className() { return "ThePEG::MEGroup"; }
};

/** @endcond */

}

#endif /* ThePEG_MEGroup_H */