This file is indexed.

/usr/include/ThePEG/Cuts/Cuts.h is in libthepeg-dev 1.8.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
// -*- C++ -*-
//
// Cuts.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef THEPEG_Cuts_H
#define THEPEG_Cuts_H
//
// This is the declaration of the Cuts class.
//

#include "ThePEG/Interface/Interfaced.h"
#include "Cuts.fh"
#include "OneCutBase.h"
#include "TwoCutBase.h"
#include "MultiCutBase.h"
#include "JetFinder.h"

namespace ThePEG {

/**
 * Cuts is a class for implementing kinematical cuts in ThePEG. The
 * class itself only implements cuts on the total momentum of the hard
 * sub-process, implemented as minimum and maximum values of \f$x_1\f$
 * and \f$x_2\f$ (or \f$\hat{s}=x_1x_2S_{tot}\f$ and
 * \f$\hat{y}=\log(x_1/x_2)/2\f$. Further cuts can be implemented
 * either by inheriting from this base class, in which the virtual
 * cut() function should be overridden, or by assigning objects of
 * class OneCutBase, TwoCutBase and MultiCutBase defining cuts on
 * single particles, pairs of particles and groups of particles in the
 * hard sub-process respectively.
 *
 * The Cuts object must be initialized specifying the overall
 * laboratory frame, giving the total squared invariant mass, \f$S\f$,
 * and the rapidity, \f$Y\f$, of the colliding particles in this
 * frame. The colliding particles are thus assumed to be directed
 * along the \f$z\f$-axis.
 *
 * For each event, the Cuts object must also be initialized giving the
 * squared invarint mass, \f$\hat{s}\f$, and the total rapidity,
 * \f$\hat{y}\f$, of the hard sub-process in the center-of-mass frame
 * of the colliding particles. Note that this means that the
 * transformation between the lab frame and the rest frame of the hard
 * sub-process is assumed to be a simple boost along the z-axis.
 *
 * @see \ref CutsInterfaces "The interfaces"
 * defined for Cuts.
 */
class Cuts: public Interfaced {

public:

  /**
   * A vector of OneCutBase pointers.
   */
  typedef vector<OneCutPtr> OneCutVector;

  /**
   * A vector of TwoCutBase pointers.
   */
  typedef vector<TwoCutPtr> TwoCutVector;

  /**
   * A vector of MultiCutBase pointers.
   */
  typedef vector<MultiCutPtr> MultiCutVector;

public:

  /** @name Standard constructors and destructors. */
  //@{
  /**
   * The default constructor.
   */
  Cuts(Energy MhatMin=2*GeV);

  /**
   * The destructor.
   */
  virtual ~Cuts();
  //@}

public:

  /** @name Initialization functions. */
  //@{
  /**
   * Initialize this object specifying the maximum total invariant
   * mass squared, \a smax, and the total rapidity, \a Y, of the
   * colliding particles (for the maximum invariant mass). A sub-class
   * overriding this function must make sure the base-class function
   * is called. This function should be called once in the beginning
   * of a run.
   */
  virtual void initialize(Energy2 smax, double Y);

  /**
   * Initialize this object for a new event. A sub-class overriding
   * this function must make sure the base-class function is called.
   * This function is called before the generation of a new
   * sub-process, before the incoming partons have been generated.
   */
  virtual void initEvent();

  /**
   * Set information about the invariant mass squared, \a shat, and
   * rapidity, \a yhat, of the hard sub-process. The rapidity should
   * be given wrt. the center of mass of the colliding particles. A
   * sub-class overriding this function must make sure the base-class
   * function is called. This function is called before the generation
   * of a new sub-process, after the incoming partons have been
   * generated. If \a mirror is true any questions regarding cuts on
   * the sub-process in the functions minYStar(tcPDPtr),
   * maxYStar(tcPDPtr p), passCuts(const tcPDVector &, const
   * vector<LorentzMomentum> &, tcPDPtr, tcPDPtr) and passCuts(const
   * tcPVector &, tcPDPtr t1, tcPDPtr) will assume that the z-axis is
   * reversed in the sub-process rest frame. Returns false if the
   * given values were outside of the cuts.
   */
  virtual bool
  initSubProcess(Energy2 shat, double yhat, bool mirror = false) const;
  //@}

  /** @name Check functions to see if a state has passed the cuts or not. */
  //@{
  /**
   * Check if the outgoing particles, with the given types and
   * momenta, from a sub-process passes the cuts. The particles must
   * be given in the rest frame of tha hard sub-process, and the
   * initSubProcess must have been called before. Also the types of
   * the incoming partons, \a t1 and \a t2, may be given if availible.
   */
  virtual bool passCuts(const tcPDVector & ptype, const vector<LorentzMomentum> & p,
			tcPDPtr t1 = tcPDPtr(), tcPDPtr t2 = tcPDPtr()) const;

  /**
   * Check if the outgoing particles from a sub-process passes the
   * cuts. The particles must be given in the rest frame of tha hard
   * sub-process, and the initSubProcess must have been called
   * before. Also the types of the incoming partons, \a t1 and \a t2,
   * may be given if availible.
   */
  bool passCuts(const tcPVector & p,
		tcPDPtr t1 = tcPDPtr(), tcPDPtr t2 = tcPDPtr()) const;

  /**
   * Check if the incoming and outgoing particles in the given
   * sub-process passes the cuts. The sub-process must be given in its
   * rest frame, and the initSubProcess must have been called before.
   */
  bool passCuts(const SubProcess & sub) const;

  /**
   * Check if the given collision passes the cuts. The collision must
   * be given in its rest frame.
   */
  bool passCuts(const Collision & coll) const;
  //@}

  /** @name Access to cuts of the underlying cut objects. */
  //@{
  /**
   * Return the minimum allowed squared invariant mass of two outgoing
   * partons of type \a pi and \a pj. This function first determines
   * the minimum from the corresponding function from in TwoCutBase
   * objects. If no minimum was found, one is derived from
   * minKTClus(), minDurham(), minKT() and minDeltaR(), if possible.
   */
  Energy2 minSij(tcPDPtr pi, tcPDPtr pj) const;

  /**
   * Return the minimum allowed value of the negative of the squared
   * invariant mass of an incoming parton of type \a pi and an
   * outgoing parton of type \a po. This function first determines the
   * minimum from the corresponding function from in TwoCutBase
   * objects. If no minimum was found, one is derived from minKT(), if
   * possible.
   */
  Energy2 minTij(tcPDPtr pi, tcPDPtr po) const;

  /**
   * Return the minimum allowed value of \f$\Delta
   * R_{ij}=\sqrt{\Delta\eta_{ij}^2+\Delta\phi_{ij}^2}\f$ of two
   * outgoing partons of type \a pi and \a pj. Simply returns the
   * maximum of the results from calling the corresponding function in
   * the TwoCutBase objects.
   */
  double minDeltaR(tcPDPtr pi, tcPDPtr pj) const;

  /**
   * Return the minimum allowed value of the longitudinally invariant
   * \f$k_\perp\f$-algorithms distance measure. This is defined as
   * \f$\min(p_{\perp i}, p_{\perp
   * j})\sqrt{\Delta\eta_{ij}^2+\Delta\phi_{ij}^2}\f$ for two outgoing
   * partons, or simply \f$p_{\perp i}\f$ or \f$p_{\perp j}\f$ for a
   * single outgoing parton. Returns 0 if both partons are incoming. A
   * null pointer indicates an incoming parton, hence the type of the
   * incoming parton is irrelevant. Simply returns the maximum of the
   * results from calling the corresponding function in the TwoCutBase
   * objects.
   */
  Energy minKTClus(tcPDPtr pi, tcPDPtr pj) const;

  /**
   * Return the minimum allowed value of the Durham
   * \f$k_\perp\f$-algorithms distance measure. This is defined as
   * \f$2\min(E_j^2, E_j^2)(1-\cos\theta_{ij})/\hat{s}\f$ for two
   * outgoing partons. Simply returns the maximum of the results from
   * calling the corresponding function in the TwoCutBase objects.
   */
  double minDurham(tcPDPtr pi, tcPDPtr pj) const;

  /**
   * Return the minimum allowed value of the transverse momentum of an
   * outgoing parton. This function first determines the minimum from
   * the corresponding function from in OneCutBase objects. If no
   * minimum was found, one is derived from minKTClus(), if possible.
   */
  Energy minKT(tcPDPtr p) const;

  /**
   * Return the minimum allowed pseudo-rapidity of an outgoing parton
   * of the given type. The pseudo-rapidity is measured in the lab
   * system. Simply returns the maximum of the results from calling
   * the corresponding function in the OneCutBase objects.
   */
  double minEta(tcPDPtr p) const;

  /**
   * Return the maximum allowed pseudo-rapidity of an outgoing parton
   * of the given type. The pseudo-rapidity is measured in the lab
   * system. Simply returns the minimum of the results from calling
   * the corresponding function in the OneCutBase objects.
   */
  double maxEta(tcPDPtr p) const;

  /**
   * Return the minimum allowed rapidity of an outgoing parton
   * of the given type. The rapidity is measured in the lab
   * system. Simply returns the maximum of the results from calling
   * the corresponding function in the OneCutBase objects.
   */
  double minRapidityMax(tcPDPtr p) const;

  /**
   * Return the maximum allowed rapidity of an outgoing parton
   * of the given type. The rapidity is measured in the lab
   * system. Simply returns the minimum of the results from calling
   * the corresponding function in the OneCutBase objects.
   */
  double maxRapidityMin(tcPDPtr p) const;

  /**
   * Return the minimum allowed rapidity of an outgoing parton of the
   * given type in the center-of-mass system of the hard sub-process.
   * Only available after initSubProcess() has been called.
   */
  double minYStar(tcPDPtr p) const;

  /**
   * Return the minimum allowed rapidity of an outgoing parton of the
   * given type in the center-of-mass system of the hard sub-process.
   * Only available after initSubProcess() has been called.
   */
  double maxYStar(tcPDPtr p) const;

  /**
   * Return the minimum allowed value of the squared invariant mass of
   * a set of outgoing partons of the given types. Typically used to
   * cut off the tails of the mass of a resonance for
   * efficiency. Simply returns the maximum of the results from
   * calling the corresponding function in the MultiCutBase objects.
   */
  Energy2 minS(const tcPDVector & pv) const;

  /**
   * Return the maximum allowed value of the squared invariant mass of
   * a set of outgoing partons of the given types. Typically used to
   * cut off the tails of the mass of a resonance for
   * efficiency. Simply returns the minimum of the results from
   * calling the corresponding function in the MultiCutBase objects.
   */
  Energy2 maxS(const tcPDVector & pv) const;
  //@}

  /** @name Direct access to underlying cut objects. */
  //@{
  /**
   * Return a vector of pointers to objects of the given class (with
   * base class OneCutBase).
   */
  template <typename T>
  vector<typename Ptr<T>::transient_const_pointer>
  oneCutObjects() const;

  /**
   * Return a vector of pointers to objects of the given class (with
   * base class TwoCutBase).
   */
  template <typename T>
  vector<typename Ptr<T>::transient_const_pointer>
  twoCutObjects() const;

  /**
   * Return a vector of pointers to objects of the given class (with
   * base class MultiCutBase).
   */
  template <typename T>
  vector<typename Ptr<T>::transient_const_pointer>
  multiCutObjects() const;

  /**
   * Return the objects defining cuts on single outgoing partons from the
   * hard sub-process.
   */
  const OneCutVector& oneCuts() const { return theOneCuts; }

  /**
   * Return the objects defining cuts on pairs of particles in the hard
   * sub-process.
   */
  const TwoCutVector& twoCuts() const { return theTwoCuts; }

  /**
   * Return the objects defining cuts on sets of outgoing particles from the
   * hard sub-process.
   */
  const MultiCutVector& multiCuts() const { return theMultiCuts; }

  /**
   * Return the jet finder
   */
  Ptr<JetFinder>::tptr jetFinder() const { return theJetFinder; }

  /**
   * Add a OneCutBase object.
   */
  void add(tOneCutPtr c) { theOneCuts.push_back(c); }

  /**
   * Add a TwoCutBase object.
   */
  void add(tTwoCutPtr c) { theTwoCuts.push_back(c); }

  /**
   * Add a MultiCutBase object.
   */
  void add(tMultiCutPtr c) { theMultiCuts.push_back(c); }
  //@}

public:

  /** @name Simple access functions. */
  //@{
  /**
   * The maximum allowed total invariant mass squared allowed for
   * events to be considered.
   */
  Energy2 SMax() const { return theSMax; }


  /**
   * The total rapidity of the colliding particles corresponding to
   * the maximum invariant mass squared, SMax().
   */
  double Y() const { return theY; }

  /**
   * The invariant mass squared of the hard sub-process of the event
   * being considered.
   */
  Energy2 currentSHat() const { return theCurrentSHat; }

  /**
   * The total rapidity of hard sub-process (wrt. the rest system of
   * the colliding particles so that currentYHat() + Y() gives the
   * true rapidity) of the event being considered.
   */
  double currentYHat() const { return theCurrentYHat; }

  //@}

  /** @name Functions to inquire about specific cuts. */
  //@{
  /**
   * The minimum allowed value of \f$\hat{s}\f$.
   */
  Energy2 sHatMin() const { return max(sqr(theMHatMin), theX1Min*theX2Min*SMax()); }

  /**
   * The maximum allowed value of \f$\hat{s}\f$.
   */
  Energy2 sHatMax() const { return min(sqr(theMHatMax), theX1Max*theX2Max*SMax()); }

  /**
   * Check if the given \f$\hat{s}\f$ is within the cuts.
   */
  bool sHat(Energy2 sh) const { 
    return sh > sHatMin() && sh <= sHatMax()*(1.0 + 1000.0*Constants::epsilon);
  }

  /**
   * The minimum allowed value of \f$\sqrt{\hat{s}}\f$.
   */
  Energy mHatMin() const { return max(theMHatMin, sqrt(theX1Min*theX2Min*SMax())); }

  /**
   * The maximum allowed value of \f$\sqrt{\hat{s}}\f$.
   */
  Energy mHatMax() const { return min(theMHatMax, sqrt(theX1Max*theX2Max*SMax())); }

  /**
   * The minimum value of the rapidity of the hard sub-process
   * (wrt. the rest system of the colliding particles).
   */
  double yHatMin() const;

  /**
   * The maximum value of the rapidity of the hard sub-process
   * (wrt. the rest system of the colliding particles).
   */
  double yHatMax() const;

  /**
   * Check if the given \f$\hat{y}\f$ is within the cuts.
   */
  bool yHat(double y) const;

  /**
   * The minimum value of the positive light-cone fraction of the hard
   * sub-process.
   */
  double x1Min() const;

  /**
   * The maximum value of the positive light-cone fraction of the hard
   * sub-process.
   */
  double x1Max() const;

  /**
   * Check if the given \f$x_1\f$ is within the cuts.
   */
  bool x1(double x) const;

  /**
   * The minimum value of the negative light-cone fraction of the hard
   * sub-process.
   */
  double x2Min() const;

  /**
   * The maximum value of the negative light-cone fraction of the hard
   * sub-process.
   */
  double x2Max() const;

  /**
   * Check if the given \f$x_2\f$ is within the cuts.
   */
  bool x2(double x) const;

  /**
   * The minimum allowed value of the scale to be used in PDF's and
   * coupling constants.
   */
  Energy2 scaleMin() const { return theScaleMin; }

  /**
   * The maximum allowed value of the scale to be used in PDF's and
   * coupling constants.
   */
  Energy2 scaleMax() const { return theScaleMax; }

  /**
   * Check if the given scale is within the cuts.
   */
  bool scale(Energy2 Q2) const { return Q2 > scaleMin() && Q2 < scaleMax(); }

  /**
   * Set true if a matrix element is should be using this cut and is
   * mirrored along the z-axis .
   */
  bool subMirror() const { return theSubMirror; }
  //@}

public:

  /**
   * Describe the currently active cuts in the log file.
   */
  virtual void describe() const;

protected:

  /** @name Standard Interfaced functions. */
  //@{
  /**
   * Initialize this object. Called in the run phase just before
   * a run begins.
   */
  virtual void doinitrun();
  //@}

public:

  /** @name Functions used by the persistent I/O system. */
  //@{
  /**
   * Function used to write out object persistently.
   * @param os the persistent output stream written to.
   */
  void persistentOutput(PersistentOStream & os) const;

  /**
   * Function used to read in object persistently.
   * @param is the persistent input stream read from.
   * @param version the version number of the object when written.
   */
  void persistentInput(PersistentIStream & is, int version);
  //@}

  /**
   * The standard Init function used to initialize the interfaces.
   * Called exactly once for each class by the class description system
   * before the main function starts or
   * when this class is dynamically loaded.
   */
  static void Init();

protected:

  /** @name Clone Methods. */
  //@{
  /**
   * Make a simple clone of this object.
   * @return a pointer to the new object.
   */
  virtual IBPtr clone() const;

  /** Make a clone of this object, possibly modifying the cloned object
   * to make it sane.
   * @return a pointer to the new object.
   */
  virtual IBPtr fullclone() const;
  //@}

private:

  /**
   * Helper function used by the interface.
   */
  Energy maxMHatMin() const;

  /**
   * Helper function used by the interface.
   */
  Energy minMHatMax() const;

  /**
   * Helper function used by the interface.
   */
  double maxYHatMin() const;

  /**
   * Helper function used by the interface.
   */
  double minYHatMax() const;

  /**
   * Helper function used by the interface.
   */
  double maxX1Min() const;

  /**
   * Helper function used by the interface.
   */
  double minX1Max() const;

  /**
   * Helper function used by the interface.
   */
  double maxX2Min() const;

  /**
   * Helper function used by the interface.
   */
  double minX2Max() const;

  /**
   * Helper function used by the interface.
   */
  Energy2 maxScaleMin() const;

  /**
   * Helper function used by the interface.
   */
  Energy2 minScaleMax() const;

private:

  /**
   * The maximum allowed total invariant mass squared allowed for
   * events to be considered.
   */
  Energy2 theSMax;

  /**
   * The total rapidity of the colliding particles corresponding to
   * the maximum invariant mass squared, SMax().
   */
  double theY;

  /**
   * The invariant mass squared of the hard sub-process of the event
   * being considered.
   */
  mutable Energy2 theCurrentSHat;

  /**
   * The total rapidity of hard sub-process (wrt. the rest system of
   * the colliding particles so that currentYHat() + Y() gives the
   * true rapidity) of the event being considered.
   */
  mutable double theCurrentYHat;

  /**
   * The minimum allowed value of \f$\sqrt{\hat{s}}\f$.
   */
  Energy theMHatMin;

  /**
   * The maximum allowed value of \f$\sqrt{\hat{s}}\f$.
   */
  Energy theMHatMax;

  /**
   * The minimum value of the rapidity of the hard sub-process
   * (wrt. the rest system of the colliding particles).
   */
  double theYHatMin;

  /**
   * The maximum value of the rapidity of the hard sub-process
   * (wrt. the rest system of the colliding particles).
   */
  double theYHatMax;

  /**
   * The minimum value of the positive light-cone fraction of the hard
   * sub-process.
   */
  double theX1Min;

  /**
   * The maximum value of the positive light-cone fraction of the hard
   * sub-process.
   */
  double theX1Max;

  /**
   * The minimum value of the negative light-cone fraction of the hard
   * sub-process.
   */
  double theX2Min;

  /**
   * The maximum value of the negative light-cone fraction of the hard
   * sub-process.
   */
  double theX2Max;

  /**
   * The minimum allowed value of the scale to be used in PDF's and
   * coupling constants.
   */
  Energy2 theScaleMin;

  /**
   * The maximum allowed value of the scale to be used in PDF's and
   * coupling constants.
   */
  Energy2 theScaleMax;

  /**
   * The objects defining cuts on single outgoing partons from the
   * hard sub-process.
   */
  OneCutVector theOneCuts;

  /**
   * The objects defining cuts on pairs of particles in the hard
   * sub-process.
   */
  TwoCutVector theTwoCuts;

  /**
   * The objects defining cuts on sets of outgoing particles from the
   * hard sub-process.
   */
  MultiCutVector theMultiCuts;

  /**
   * An optional jet finder used to define cuts on the level of
   * reconstructed jets.
   */
  Ptr<JetFinder>::ptr theJetFinder;

  /**
   * Set to true if a matrix element is should be using this cut and is
   * mirrored along the z-axis .
   */
  mutable bool theSubMirror;

private:

  /**
   * The static object used to initialize the description of this class.
   * Indicates that this is a concrete class with persistent data.
   */
  static ClassDescription<Cuts> initCuts;

  /**
   * The assignment operator is private and must never be called.
   * In fact, it should not even be implemented.
   */
  Cuts & operator=(const Cuts &);

};

}

#include "ThePEG/Utilities/ClassTraits.h"

namespace ThePEG {

/** @cond TRAITSPECIALIZATIONS */

/** This template specialization informs ThePEG about the
 *  base classes of Cuts. */
template <>
struct BaseClassTrait<Cuts,1> {
  /** Typedef of the first base class of Cuts. */
  typedef Interfaced NthBase;
};

/** This template specialization informs ThePEG about the name of
 *  the Cuts class and the shared object where it is defined. */
template <>
struct ClassTraits<Cuts>
  : public ClassTraitsBase<Cuts> {
  /** Return a platform-independent class name */
  static string className() { return "ThePEG::Cuts"; }
};

/** @endcond */

}

#endif /* THEPEG_Cuts_H */