/usr/include/ThePEG/Cuts/Cuts.h is in libthepeg-dev 1.8.0-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 | // -*- C++ -*-
//
// Cuts.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef THEPEG_Cuts_H
#define THEPEG_Cuts_H
//
// This is the declaration of the Cuts class.
//
#include "ThePEG/Interface/Interfaced.h"
#include "Cuts.fh"
#include "OneCutBase.h"
#include "TwoCutBase.h"
#include "MultiCutBase.h"
#include "JetFinder.h"
namespace ThePEG {
/**
* Cuts is a class for implementing kinematical cuts in ThePEG. The
* class itself only implements cuts on the total momentum of the hard
* sub-process, implemented as minimum and maximum values of \f$x_1\f$
* and \f$x_2\f$ (or \f$\hat{s}=x_1x_2S_{tot}\f$ and
* \f$\hat{y}=\log(x_1/x_2)/2\f$. Further cuts can be implemented
* either by inheriting from this base class, in which the virtual
* cut() function should be overridden, or by assigning objects of
* class OneCutBase, TwoCutBase and MultiCutBase defining cuts on
* single particles, pairs of particles and groups of particles in the
* hard sub-process respectively.
*
* The Cuts object must be initialized specifying the overall
* laboratory frame, giving the total squared invariant mass, \f$S\f$,
* and the rapidity, \f$Y\f$, of the colliding particles in this
* frame. The colliding particles are thus assumed to be directed
* along the \f$z\f$-axis.
*
* For each event, the Cuts object must also be initialized giving the
* squared invarint mass, \f$\hat{s}\f$, and the total rapidity,
* \f$\hat{y}\f$, of the hard sub-process in the center-of-mass frame
* of the colliding particles. Note that this means that the
* transformation between the lab frame and the rest frame of the hard
* sub-process is assumed to be a simple boost along the z-axis.
*
* @see \ref CutsInterfaces "The interfaces"
* defined for Cuts.
*/
class Cuts: public Interfaced {
public:
/**
* A vector of OneCutBase pointers.
*/
typedef vector<OneCutPtr> OneCutVector;
/**
* A vector of TwoCutBase pointers.
*/
typedef vector<TwoCutPtr> TwoCutVector;
/**
* A vector of MultiCutBase pointers.
*/
typedef vector<MultiCutPtr> MultiCutVector;
public:
/** @name Standard constructors and destructors. */
//@{
/**
* The default constructor.
*/
Cuts(Energy MhatMin=2*GeV);
/**
* The destructor.
*/
virtual ~Cuts();
//@}
public:
/** @name Initialization functions. */
//@{
/**
* Initialize this object specifying the maximum total invariant
* mass squared, \a smax, and the total rapidity, \a Y, of the
* colliding particles (for the maximum invariant mass). A sub-class
* overriding this function must make sure the base-class function
* is called. This function should be called once in the beginning
* of a run.
*/
virtual void initialize(Energy2 smax, double Y);
/**
* Initialize this object for a new event. A sub-class overriding
* this function must make sure the base-class function is called.
* This function is called before the generation of a new
* sub-process, before the incoming partons have been generated.
*/
virtual void initEvent();
/**
* Set information about the invariant mass squared, \a shat, and
* rapidity, \a yhat, of the hard sub-process. The rapidity should
* be given wrt. the center of mass of the colliding particles. A
* sub-class overriding this function must make sure the base-class
* function is called. This function is called before the generation
* of a new sub-process, after the incoming partons have been
* generated. If \a mirror is true any questions regarding cuts on
* the sub-process in the functions minYStar(tcPDPtr),
* maxYStar(tcPDPtr p), passCuts(const tcPDVector &, const
* vector<LorentzMomentum> &, tcPDPtr, tcPDPtr) and passCuts(const
* tcPVector &, tcPDPtr t1, tcPDPtr) will assume that the z-axis is
* reversed in the sub-process rest frame. Returns false if the
* given values were outside of the cuts.
*/
virtual bool
initSubProcess(Energy2 shat, double yhat, bool mirror = false) const;
//@}
/** @name Check functions to see if a state has passed the cuts or not. */
//@{
/**
* Check if the outgoing particles, with the given types and
* momenta, from a sub-process passes the cuts. The particles must
* be given in the rest frame of tha hard sub-process, and the
* initSubProcess must have been called before. Also the types of
* the incoming partons, \a t1 and \a t2, may be given if availible.
*/
virtual bool passCuts(const tcPDVector & ptype, const vector<LorentzMomentum> & p,
tcPDPtr t1 = tcPDPtr(), tcPDPtr t2 = tcPDPtr()) const;
/**
* Check if the outgoing particles from a sub-process passes the
* cuts. The particles must be given in the rest frame of tha hard
* sub-process, and the initSubProcess must have been called
* before. Also the types of the incoming partons, \a t1 and \a t2,
* may be given if availible.
*/
bool passCuts(const tcPVector & p,
tcPDPtr t1 = tcPDPtr(), tcPDPtr t2 = tcPDPtr()) const;
/**
* Check if the incoming and outgoing particles in the given
* sub-process passes the cuts. The sub-process must be given in its
* rest frame, and the initSubProcess must have been called before.
*/
bool passCuts(const SubProcess & sub) const;
/**
* Check if the given collision passes the cuts. The collision must
* be given in its rest frame.
*/
bool passCuts(const Collision & coll) const;
//@}
/** @name Access to cuts of the underlying cut objects. */
//@{
/**
* Return the minimum allowed squared invariant mass of two outgoing
* partons of type \a pi and \a pj. This function first determines
* the minimum from the corresponding function from in TwoCutBase
* objects. If no minimum was found, one is derived from
* minKTClus(), minDurham(), minKT() and minDeltaR(), if possible.
*/
Energy2 minSij(tcPDPtr pi, tcPDPtr pj) const;
/**
* Return the minimum allowed value of the negative of the squared
* invariant mass of an incoming parton of type \a pi and an
* outgoing parton of type \a po. This function first determines the
* minimum from the corresponding function from in TwoCutBase
* objects. If no minimum was found, one is derived from minKT(), if
* possible.
*/
Energy2 minTij(tcPDPtr pi, tcPDPtr po) const;
/**
* Return the minimum allowed value of \f$\Delta
* R_{ij}=\sqrt{\Delta\eta_{ij}^2+\Delta\phi_{ij}^2}\f$ of two
* outgoing partons of type \a pi and \a pj. Simply returns the
* maximum of the results from calling the corresponding function in
* the TwoCutBase objects.
*/
double minDeltaR(tcPDPtr pi, tcPDPtr pj) const;
/**
* Return the minimum allowed value of the longitudinally invariant
* \f$k_\perp\f$-algorithms distance measure. This is defined as
* \f$\min(p_{\perp i}, p_{\perp
* j})\sqrt{\Delta\eta_{ij}^2+\Delta\phi_{ij}^2}\f$ for two outgoing
* partons, or simply \f$p_{\perp i}\f$ or \f$p_{\perp j}\f$ for a
* single outgoing parton. Returns 0 if both partons are incoming. A
* null pointer indicates an incoming parton, hence the type of the
* incoming parton is irrelevant. Simply returns the maximum of the
* results from calling the corresponding function in the TwoCutBase
* objects.
*/
Energy minKTClus(tcPDPtr pi, tcPDPtr pj) const;
/**
* Return the minimum allowed value of the Durham
* \f$k_\perp\f$-algorithms distance measure. This is defined as
* \f$2\min(E_j^2, E_j^2)(1-\cos\theta_{ij})/\hat{s}\f$ for two
* outgoing partons. Simply returns the maximum of the results from
* calling the corresponding function in the TwoCutBase objects.
*/
double minDurham(tcPDPtr pi, tcPDPtr pj) const;
/**
* Return the minimum allowed value of the transverse momentum of an
* outgoing parton. This function first determines the minimum from
* the corresponding function from in OneCutBase objects. If no
* minimum was found, one is derived from minKTClus(), if possible.
*/
Energy minKT(tcPDPtr p) const;
/**
* Return the minimum allowed pseudo-rapidity of an outgoing parton
* of the given type. The pseudo-rapidity is measured in the lab
* system. Simply returns the maximum of the results from calling
* the corresponding function in the OneCutBase objects.
*/
double minEta(tcPDPtr p) const;
/**
* Return the maximum allowed pseudo-rapidity of an outgoing parton
* of the given type. The pseudo-rapidity is measured in the lab
* system. Simply returns the minimum of the results from calling
* the corresponding function in the OneCutBase objects.
*/
double maxEta(tcPDPtr p) const;
/**
* Return the minimum allowed rapidity of an outgoing parton
* of the given type. The rapidity is measured in the lab
* system. Simply returns the maximum of the results from calling
* the corresponding function in the OneCutBase objects.
*/
double minRapidityMax(tcPDPtr p) const;
/**
* Return the maximum allowed rapidity of an outgoing parton
* of the given type. The rapidity is measured in the lab
* system. Simply returns the minimum of the results from calling
* the corresponding function in the OneCutBase objects.
*/
double maxRapidityMin(tcPDPtr p) const;
/**
* Return the minimum allowed rapidity of an outgoing parton of the
* given type in the center-of-mass system of the hard sub-process.
* Only available after initSubProcess() has been called.
*/
double minYStar(tcPDPtr p) const;
/**
* Return the minimum allowed rapidity of an outgoing parton of the
* given type in the center-of-mass system of the hard sub-process.
* Only available after initSubProcess() has been called.
*/
double maxYStar(tcPDPtr p) const;
/**
* Return the minimum allowed value of the squared invariant mass of
* a set of outgoing partons of the given types. Typically used to
* cut off the tails of the mass of a resonance for
* efficiency. Simply returns the maximum of the results from
* calling the corresponding function in the MultiCutBase objects.
*/
Energy2 minS(const tcPDVector & pv) const;
/**
* Return the maximum allowed value of the squared invariant mass of
* a set of outgoing partons of the given types. Typically used to
* cut off the tails of the mass of a resonance for
* efficiency. Simply returns the minimum of the results from
* calling the corresponding function in the MultiCutBase objects.
*/
Energy2 maxS(const tcPDVector & pv) const;
//@}
/** @name Direct access to underlying cut objects. */
//@{
/**
* Return a vector of pointers to objects of the given class (with
* base class OneCutBase).
*/
template <typename T>
vector<typename Ptr<T>::transient_const_pointer>
oneCutObjects() const;
/**
* Return a vector of pointers to objects of the given class (with
* base class TwoCutBase).
*/
template <typename T>
vector<typename Ptr<T>::transient_const_pointer>
twoCutObjects() const;
/**
* Return a vector of pointers to objects of the given class (with
* base class MultiCutBase).
*/
template <typename T>
vector<typename Ptr<T>::transient_const_pointer>
multiCutObjects() const;
/**
* Return the objects defining cuts on single outgoing partons from the
* hard sub-process.
*/
const OneCutVector& oneCuts() const { return theOneCuts; }
/**
* Return the objects defining cuts on pairs of particles in the hard
* sub-process.
*/
const TwoCutVector& twoCuts() const { return theTwoCuts; }
/**
* Return the objects defining cuts on sets of outgoing particles from the
* hard sub-process.
*/
const MultiCutVector& multiCuts() const { return theMultiCuts; }
/**
* Return the jet finder
*/
Ptr<JetFinder>::tptr jetFinder() const { return theJetFinder; }
/**
* Add a OneCutBase object.
*/
void add(tOneCutPtr c) { theOneCuts.push_back(c); }
/**
* Add a TwoCutBase object.
*/
void add(tTwoCutPtr c) { theTwoCuts.push_back(c); }
/**
* Add a MultiCutBase object.
*/
void add(tMultiCutPtr c) { theMultiCuts.push_back(c); }
//@}
public:
/** @name Simple access functions. */
//@{
/**
* The maximum allowed total invariant mass squared allowed for
* events to be considered.
*/
Energy2 SMax() const { return theSMax; }
/**
* The total rapidity of the colliding particles corresponding to
* the maximum invariant mass squared, SMax().
*/
double Y() const { return theY; }
/**
* The invariant mass squared of the hard sub-process of the event
* being considered.
*/
Energy2 currentSHat() const { return theCurrentSHat; }
/**
* The total rapidity of hard sub-process (wrt. the rest system of
* the colliding particles so that currentYHat() + Y() gives the
* true rapidity) of the event being considered.
*/
double currentYHat() const { return theCurrentYHat; }
//@}
/** @name Functions to inquire about specific cuts. */
//@{
/**
* The minimum allowed value of \f$\hat{s}\f$.
*/
Energy2 sHatMin() const { return max(sqr(theMHatMin), theX1Min*theX2Min*SMax()); }
/**
* The maximum allowed value of \f$\hat{s}\f$.
*/
Energy2 sHatMax() const { return min(sqr(theMHatMax), theX1Max*theX2Max*SMax()); }
/**
* Check if the given \f$\hat{s}\f$ is within the cuts.
*/
bool sHat(Energy2 sh) const {
return sh > sHatMin() && sh <= sHatMax()*(1.0 + 1000.0*Constants::epsilon);
}
/**
* The minimum allowed value of \f$\sqrt{\hat{s}}\f$.
*/
Energy mHatMin() const { return max(theMHatMin, sqrt(theX1Min*theX2Min*SMax())); }
/**
* The maximum allowed value of \f$\sqrt{\hat{s}}\f$.
*/
Energy mHatMax() const { return min(theMHatMax, sqrt(theX1Max*theX2Max*SMax())); }
/**
* The minimum value of the rapidity of the hard sub-process
* (wrt. the rest system of the colliding particles).
*/
double yHatMin() const;
/**
* The maximum value of the rapidity of the hard sub-process
* (wrt. the rest system of the colliding particles).
*/
double yHatMax() const;
/**
* Check if the given \f$\hat{y}\f$ is within the cuts.
*/
bool yHat(double y) const;
/**
* The minimum value of the positive light-cone fraction of the hard
* sub-process.
*/
double x1Min() const;
/**
* The maximum value of the positive light-cone fraction of the hard
* sub-process.
*/
double x1Max() const;
/**
* Check if the given \f$x_1\f$ is within the cuts.
*/
bool x1(double x) const;
/**
* The minimum value of the negative light-cone fraction of the hard
* sub-process.
*/
double x2Min() const;
/**
* The maximum value of the negative light-cone fraction of the hard
* sub-process.
*/
double x2Max() const;
/**
* Check if the given \f$x_2\f$ is within the cuts.
*/
bool x2(double x) const;
/**
* The minimum allowed value of the scale to be used in PDF's and
* coupling constants.
*/
Energy2 scaleMin() const { return theScaleMin; }
/**
* The maximum allowed value of the scale to be used in PDF's and
* coupling constants.
*/
Energy2 scaleMax() const { return theScaleMax; }
/**
* Check if the given scale is within the cuts.
*/
bool scale(Energy2 Q2) const { return Q2 > scaleMin() && Q2 < scaleMax(); }
/**
* Set true if a matrix element is should be using this cut and is
* mirrored along the z-axis .
*/
bool subMirror() const { return theSubMirror; }
//@}
public:
/**
* Describe the currently active cuts in the log file.
*/
virtual void describe() const;
protected:
/** @name Standard Interfaced functions. */
//@{
/**
* Initialize this object. Called in the run phase just before
* a run begins.
*/
virtual void doinitrun();
//@}
public:
/** @name Functions used by the persistent I/O system. */
//@{
/**
* Function used to write out object persistently.
* @param os the persistent output stream written to.
*/
void persistentOutput(PersistentOStream & os) const;
/**
* Function used to read in object persistently.
* @param is the persistent input stream read from.
* @param version the version number of the object when written.
*/
void persistentInput(PersistentIStream & is, int version);
//@}
/**
* The standard Init function used to initialize the interfaces.
* Called exactly once for each class by the class description system
* before the main function starts or
* when this class is dynamically loaded.
*/
static void Init();
protected:
/** @name Clone Methods. */
//@{
/**
* Make a simple clone of this object.
* @return a pointer to the new object.
*/
virtual IBPtr clone() const;
/** Make a clone of this object, possibly modifying the cloned object
* to make it sane.
* @return a pointer to the new object.
*/
virtual IBPtr fullclone() const;
//@}
private:
/**
* Helper function used by the interface.
*/
Energy maxMHatMin() const;
/**
* Helper function used by the interface.
*/
Energy minMHatMax() const;
/**
* Helper function used by the interface.
*/
double maxYHatMin() const;
/**
* Helper function used by the interface.
*/
double minYHatMax() const;
/**
* Helper function used by the interface.
*/
double maxX1Min() const;
/**
* Helper function used by the interface.
*/
double minX1Max() const;
/**
* Helper function used by the interface.
*/
double maxX2Min() const;
/**
* Helper function used by the interface.
*/
double minX2Max() const;
/**
* Helper function used by the interface.
*/
Energy2 maxScaleMin() const;
/**
* Helper function used by the interface.
*/
Energy2 minScaleMax() const;
private:
/**
* The maximum allowed total invariant mass squared allowed for
* events to be considered.
*/
Energy2 theSMax;
/**
* The total rapidity of the colliding particles corresponding to
* the maximum invariant mass squared, SMax().
*/
double theY;
/**
* The invariant mass squared of the hard sub-process of the event
* being considered.
*/
mutable Energy2 theCurrentSHat;
/**
* The total rapidity of hard sub-process (wrt. the rest system of
* the colliding particles so that currentYHat() + Y() gives the
* true rapidity) of the event being considered.
*/
mutable double theCurrentYHat;
/**
* The minimum allowed value of \f$\sqrt{\hat{s}}\f$.
*/
Energy theMHatMin;
/**
* The maximum allowed value of \f$\sqrt{\hat{s}}\f$.
*/
Energy theMHatMax;
/**
* The minimum value of the rapidity of the hard sub-process
* (wrt. the rest system of the colliding particles).
*/
double theYHatMin;
/**
* The maximum value of the rapidity of the hard sub-process
* (wrt. the rest system of the colliding particles).
*/
double theYHatMax;
/**
* The minimum value of the positive light-cone fraction of the hard
* sub-process.
*/
double theX1Min;
/**
* The maximum value of the positive light-cone fraction of the hard
* sub-process.
*/
double theX1Max;
/**
* The minimum value of the negative light-cone fraction of the hard
* sub-process.
*/
double theX2Min;
/**
* The maximum value of the negative light-cone fraction of the hard
* sub-process.
*/
double theX2Max;
/**
* The minimum allowed value of the scale to be used in PDF's and
* coupling constants.
*/
Energy2 theScaleMin;
/**
* The maximum allowed value of the scale to be used in PDF's and
* coupling constants.
*/
Energy2 theScaleMax;
/**
* The objects defining cuts on single outgoing partons from the
* hard sub-process.
*/
OneCutVector theOneCuts;
/**
* The objects defining cuts on pairs of particles in the hard
* sub-process.
*/
TwoCutVector theTwoCuts;
/**
* The objects defining cuts on sets of outgoing particles from the
* hard sub-process.
*/
MultiCutVector theMultiCuts;
/**
* An optional jet finder used to define cuts on the level of
* reconstructed jets.
*/
Ptr<JetFinder>::ptr theJetFinder;
/**
* Set to true if a matrix element is should be using this cut and is
* mirrored along the z-axis .
*/
mutable bool theSubMirror;
private:
/**
* The static object used to initialize the description of this class.
* Indicates that this is a concrete class with persistent data.
*/
static ClassDescription<Cuts> initCuts;
/**
* The assignment operator is private and must never be called.
* In fact, it should not even be implemented.
*/
Cuts & operator=(const Cuts &);
};
}
#include "ThePEG/Utilities/ClassTraits.h"
namespace ThePEG {
/** @cond TRAITSPECIALIZATIONS */
/** This template specialization informs ThePEG about the
* base classes of Cuts. */
template <>
struct BaseClassTrait<Cuts,1> {
/** Typedef of the first base class of Cuts. */
typedef Interfaced NthBase;
};
/** This template specialization informs ThePEG about the name of
* the Cuts class and the shared object where it is defined. */
template <>
struct ClassTraits<Cuts>
: public ClassTraitsBase<Cuts> {
/** Return a platform-independent class name */
static string className() { return "ThePEG::Cuts"; }
};
/** @endcond */
}
#endif /* THEPEG_Cuts_H */
|