/usr/include/ThePEG/Config/PhysicalQty.h is in libthepeg-dev 1.8.0-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | // -*- C++ -*-
//
// PhysicalQty.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 2006-2011 David Grellscheid, Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef Physical_Qty_H
#define Physical_Qty_H
#include "TemplateTools.h"
#include <sstream>
/** @file
*
* The PhysicalQty class allows compile-time checking of dimensional
* correctness. Mathematical operations that are inconsistent are
* flagged as type errors.
*
* Do not use the classes directly in ThePEG, use the wrappers defined
* in Units.h or Phys_Qty.h instead.
*/
namespace ThePEG {
/// Helper class to construct zero unitful quantities.
struct ZeroUnit {
/** Automatic conversion to double. */
operator double() const { return 0.0; }
};
/// ZERO can be used as zero for any unitful quantity.
const ZeroUnit ZERO = ZeroUnit();
/// Helper classes to extend or shorten fractions
//@{
/**
* Template to help with fractional powers of dimensions
*/
template <int M, int II>
struct QtyHelper
{
/// The numerator, indicating failure.
static const int I = -999999;
};
/**
* Template to help with fractional powers of dimensions
*/
template <int II>
struct QtyHelper<0,II>
{
/// The new numerator.
static const int I = II;
};
/**
* Template to help with fractional powers of dimensions
*/
template <int II, int DI, int DI2>
struct QtyInt
{
/// The new numerator.
static const int I = QtyHelper<(DI2*II)%DI,(DI2*II)/DI>::I;
};
//@}
/**
* This template class allows the compiler to check calculations with
* physical quantities for dimensional correctness. A quantity can be
* composed of arbitrary fractional powers of length L, energy E and
* charge Q. Commonly used quantities should be typedef'ed (see Units.h).
*
* Some member functions can break dimensional consistency if the user
* is not careful; these are marked explicitly.
*
* Do not use this class directly in ThePEG, use the pre-defined quantities
* from Units.h or the wrapper in Phys_Qty.h instead.
*/
template<int L, int E, int Q, int DL = 1, int DE = 1, int DQ = 1>
class Qty
{
private:
/// Constructor from raw values. Breaks consistency.
Qty(double val) : rawValue_(val) {}
public:
/// The name of the class for persistent IO
static std::string className() {
std::ostringstream os;
os << "Qty<"
<< L << ','
<< E << ','
<< Q << ','
<< DL << ','
<< DE << ','
<< DQ << '>';
return os.str();
}
/// The squared type.
typedef Qty<2*L,2*E,2*Q,DL,DE,DQ> Squared;
/// Basic unit of this quantity.
static Qty<L,E,Q,DL,DE,DQ> baseunit()
{
return Qty<L,E,Q,DL,DE,DQ>(1.0);
}
/// Default constructor to 0.
Qty() : rawValue_(0.0) {}
/// Default constructor to 0.
Qty(ZeroUnit) : rawValue_(0.0) {}
/// Constructor from a compatible quantity
template <int DL2, int DE2, int DQ2>
Qty(const Qty<QtyInt<L,DL,DL2>::I,
QtyInt<E,DE,DE2>::I,
QtyInt<Q,DQ,DQ2>::I,
DL2,DE2,DQ2> & q)
: rawValue_(q.rawValue()) {}
/// Access to the raw value. Breaks consistency.
double rawValue() const { return rawValue_; }
/// Assignment multiplication by dimensionless number.
Qty<L,E,Q,DL,DE,DQ> & operator*=(double x) { rawValue_ *= x; return *this; }
/// Assignment division by dimensionless number.
Qty<L,E,Q,DL,DE,DQ> & operator/=(double x) { rawValue_ /= x; return *this; }
/// Assignment addition with compatible quantity.
template <int DL2, int DE2, int DQ2>
Qty<L,E,Q,DL,DE,DQ> &
operator+=(const Qty<QtyInt<L,DL,DL2>::I,
QtyInt<E,DE,DE2>::I,
QtyInt<Q,DQ,DQ2>::I,
DL2,DE2,DQ2> x)
{
rawValue_ += x.rawValue();
return *this;
}
/// Assignment subtraction with compatible quantity.
template <int DL2, int DE2, int DQ2>
Qty<L,E,Q,DL,DE,DQ> &
operator-=(const Qty<QtyInt<L,DL,DL2>::I,
QtyInt<E,DE,DE2>::I,
QtyInt<Q,DQ,DQ2>::I,
DL2,DE2,DQ2> x)
{
rawValue_ -= x.rawValue();
return *this;
}
private:
/// The raw value in units of Qty::baseunit().
double rawValue_;
};
/// Specialization of Qty for <0,0,0> with conversions to double.
template<int DL, int DE, int DQ>
class Qty<0,0,0,DL,DE,DQ>
{
public:
/// The squared type.
typedef Qty<0,0,0,DL,DE,DQ> Squared;
/// Basic unit of this quantity.
static double baseunit() {
return 1.0;
}
/// Default constructor to 0.
Qty(ZeroUnit) : rawValue_(0.0) {}
/// Default constructor from a double.
Qty(double x = 0.0) : rawValue_(x) {}
/// Constructor from a compatible quantity
template <int DL2, int DE2, int DQ2>
Qty(const Qty<0,0,0,DL2,DE2,DQ2> & q) : rawValue_(q.rawValue()) {}
/// Access to the raw value.
double rawValue() const { return rawValue_; }
/// Cast to double.
operator double() const { return rawValue_; }
/// Assignment multiplication by dimensionless number.
Qty<0,0,0,DL,DE,DQ> & operator*=(double x) { rawValue_ *= x; return *this; }
/// Assignment division by dimensionless number.
Qty<0,0,0,DL,DE,DQ> & operator/=(double x) { rawValue_ /= x; return *this; }
/// Assignment addition with compatible quantity.
template <int DL2, int DE2, int DQ2>
Qty<0,0,0,DL,DE,DQ> & operator+=(const Qty<0,0,0,DL2,DE2,DQ2> x) {
rawValue_ += x.rawValue();
return *this;
}
/// Assignment subtraction with compatible quantity.
template <int DL2, int DE2, int DQ2>
Qty<0,0,0,DL,DE,DQ> & operator-=(const Qty<0,0,0,DL2,DE2,DQ2> x) {
rawValue_ -= x.rawValue();
return *this;
}
/// Assignment addition with double.
Qty<0,0,0,DL,DE,DQ> & operator+=(double x) {
rawValue_ += x;
return *this;
}
/// Assignment subtraction with double.
Qty<0,0,0,DL,DE,DQ> & operator-=(double x) {
rawValue_ -= x;
return *this;
}
private:
/// The raw value.
double rawValue_;
};
/// @name Result types for binary operations.
//@{
/**
* BinaryOpTraits should be specialized with typdefs called MulT and
* DivT which gives the type resulting when multiplying and dividing
* the template argument types respectively.
*/
template <typename T, typename U>
struct BinaryOpTraits;
/** @cond TRAITSPECIALIZATIONS */
template<int L1, int L2, int E1, int E2, int Q1, int Q2,
int DL1, int DL2, int DE1, int DE2, int DQ1, int DQ2>
struct BinaryOpTraits<Qty<L1,E1,Q1,DL1,DE1,DQ1>,
Qty<L2,E2,Q2,DL2,DE2,DQ2> > {
/** The type resulting from multiplication of the template type with
itself. */
typedef Qty<L1*DL2+L2*DL1,E1*DE2+E2*DE1,Q1*DQ2+Q2*DQ1,
DL1*DL2,DE1*DE2,DQ1*DQ2> MulT;
/** The type resulting from division of one template type with
another. */
typedef Qty<L1*DL2-L2*DL1,E1*DE2-E2*DE1,Q1*DQ2-Q2*DQ1,
DL1*DL2,DE1*DE2,DQ1*DQ2> DivT;
};
template<int L1, int E1, int Q1, int DL1, int DE1, int DQ1>
struct BinaryOpTraits<Qty<L1,E1,Q1,DL1,DE1,DQ1>,
Qty<L1,E1,Q1,DL1,DE1,DQ1> > {
/** The type resulting from multiplication of the template type with
itself. */
typedef Qty<2*L1,2*E1,2*Q1,
DL1,DE1,DQ1> MulT;
/** The type resulting from division of one template type with
another. */
typedef double DivT;
};
/**
* Multiplication template
*/
template<int L1, int E1, int Q1, int DL1, int DE1, int DQ1>
struct BinaryOpTraits<double,
Qty<L1,E1,Q1,DL1,DE1,DQ1> > {
/** The type resulting from multiplication of the template type with
itself. */
typedef Qty<L1,E1,Q1,
DL1,DE1,DQ1> MulT;
/** The type resulting from division of one template type with
another. */
typedef Qty<-L1,-E1,-Q1,
DL1,DE1,DQ1> DivT;
};
/**
* Multiplication template
*/
template<int L1, int E1, int Q1, int DL1, int DE1, int DQ1>
struct BinaryOpTraits<Qty<L1,E1,Q1,DL1,DE1,DQ1>,
double> {
/** The type resulting from multiplication of the template type with
itself. */
typedef Qty<L1,E1,Q1,
DL1,DE1,DQ1> MulT;
/** The type resulting from division of one template type with
another. */
typedef Qty<L1,E1,Q1,
DL1,DE1,DQ1> DivT;
};
//@}
/// @name Type traits for alternative code generation.
//@{
/** Type traits for alternative code generation*/
template <int L, int E, int Q, int DL, int DE, int DQ>
struct TypeTraits<Qty<L,E,Q,DL,DE,DQ> >
{
/** Enum for dimensions*/
enum { hasDimension = true };
/// Type switch set to dimensioned type.
typedef DimensionT DimType;
static const Qty<L,E,Q,DL,DE,DQ> baseunit;
};
/** Type traits for alternative code generation*/
template <int L, int E, int Q, int DL, int DE, int DQ>
const Qty<L,E,Q,DL,DE,DQ>
TypeTraits<Qty<L,E,Q,DL,DE,DQ> >::baseunit = Qty<L,E,Q,DL,DE,DQ>::baseunit();
/** Type traits for alternative code generation*/
template <int DL, int DE, int DQ>
struct TypeTraits<Qty<0,0,0,DL,DE,DQ> >
{
/** Enum for dimensions*/
enum { hasDimension = false };
/// Type switch set to standard type.
typedef StandardT DimType;
static const double baseunit;
};
/** Type traits for alternative code generation*/
template <int DL, int DE, int DQ>
const double
TypeTraits<Qty<0,0,0,DL,DE,DQ> >::baseunit = 1.0;
//@}
/** @endcond */
}
#endif
|