This file is indexed.

/usr/include/ThePEG/ACDC/ACDCGen.h is in libthepeg-dev 1.8.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// -*- C++ -*-
//
// ACDCGen.h is a part of ThePEG - Toolkit for HEP Event Generation
// Copyright (C) 1999-2011 Leif Lonnblad
//
// ThePEG is licenced under version 2 of the GPL, see COPYING for details.
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
//
#ifndef ACDCGen_H
#define ACDCGen_H

#include "ACDCGenConfig.h"
#include "ACDCTraits.h"
#include "ACDCGenCell.h"
#include "ThePEG/Utilities/Exception.h"

namespace ACDCGenerator {

/**
 * ACDCGen is a general class for sampling multi-dimensional
 * functions. ACDCGen can sample several functions simultaneously,
 * selecting different functions according to the relative
 * probabilities determined by their total integrals. The functions
 * are sampled on a unit hypercube. Function object of any class can
 * be used as long as the ACDCFncTraits class is specialized
 * correctly. ACDCFncTraits can also be used to rescale values in the
 * unit hypercube to any desired range. ACDCGen needs a random number
 * generator. Again, random number generators of any class can be used
 * as long as the ACDCRandomTraits class is specialized correctly.
 *
 * To give an unweighted samlpe ACDCGen uses a compensating
 * algorithm. Before the production sampling begins, the functions are
 * sampled randomly in the hypercube a user-defined number of times to
 * find an approximate maxumum value. The hypercube is then divided
 * into cells each of which have an approximate maximum value of the
 * function, to enable efficient sampling. The maxima are only
 * approximate though and, if a function value is found above the
 * maximum in a cell the ACDCGen will go into a compensating mode. The
 * cell is then first subdivided further and in the following this
 * cell will be over-sampled to compensate for that fact that it was
 * under-sampled before. In this way the probability of obtaining a
 * biased sample is reduced. Also rather functions with large peaks
 * are then sampled rather efficiently. Functions with narrow peaks
 * should, however, be avoided since there is no guarantee that the
 * peack is actually hit.
 */
template <typename Rnd, typename FncPtr>
class ACDCGen {

public:

  /** Template argument typedef. */
  typedef Rnd RndType;
  /** Template argument typedef. */
  typedef ACDCRandomTraits<RndType> RndTraits;
  /** Template argument typedef. */
  typedef FncPtr FncPtrType;
  /** A vector of cells. */
  typedef vector<ACDCGenCell*> CellVector;
  /** A vector of function objects. */
  typedef vector<FncPtrType> FncVector;
  /** A vector of integers. */
  typedef vector<DimType> DimVector;
  /** The size type of the vectors used. */
  typedef DimVector::size_type size_type;
  /** Template argument typedef. */
  typedef ACDCFncTraits<FncPtrType> FncTraits;

public:

  /**
   * Standard constructor requiring a random generator object to be
   * used.
   */
  inline ACDCGen(Rnd * r);

  /**
   * Default Constructor.
   */
  inline ACDCGen();

  /**
   * Destructor.
   */
  inline ~ACDCGen();

  /**
   * Add a function of a given dimension, \a dim, according to which
   * points will be generated. Note that each function, \a f, added
   * like this will have its own tree of cells. The \a maxrat argument
   * determines the lowest ratio of values allowed between the cell
   * with lowest and highest value. If negative it is given by 1/nTry().
   */
  inline bool addFunction(DimType dim, FncPtrType f, double maxrat = -1.0);

  /**
   * Remove all added functions and reset the generator;
   */
  inline void clear();

public:

  /**
   * Generate a point, choosing between the different functions
   * specified. The chosen function is returned, while the generated
   * point is obtained by the function lastPoint().
   */
  inline FncPtrType generate();

  /**
   * Reject the last generated point. Only used in the evaluation of
   * the total integral.
   */
  inline void reject();

  /**
   * Return the last generated point.
   * @return a vector of doubles, each in the interval ]0,1[.
   */
  inline const DVector & lastPoint() const;

  /**
   * Return the value of the last chosen function in the last point.
   */
  inline double lastF() const;

  /**
   * Return the function chosen for the last generated point.
   */
  inline FncPtrType lastFunction() const;

  /**
   * return the index of the function chosen for the last generated
   * point.
   */
  inline size_type last() const;

public:

  /** @name Functions influencing the efficiency of the generation. */
  //@{
  /**
   * Set the minimum cell size considered for this generation. The
   * default is the machine limit for double precision times a
   * hundred.
   */
  inline void eps(double newEps);

  /**
   * Set the safety margin used to multiply the highest found function
   * value in a cell when setting its overestimated value. (Default is
   * 1.1.)
   */
  inline void margin(double newMargin);

  /**
   * Set the number of points (with non-zero function value) used to
   * initialize the tree of cells to use in the generation for each
   * function.
   */
  inline void nTry(size_type newNTry);

  /**
   * Set the maximum number of attempts to generate a phase space
   * point, or to find non-zero points in the initialization.
   */
  inline void maxTry(long);
  //@}

public:

  /** @name Information about the current generation. */
  //@{
  /**
   * Return the current Monte Carlo estimate of the integral of the
   * specified function (or all functions if NULL) over the unit volume. 
   */
  inline double integral(FncPtrType f = FncPtrType()) const;

  /**
   * Return the error on the current Monte Carlo estimate of the
   * integral of the specified function (or all functions if NULL)
   * over the unit volume.
   */
  inline double integralErr(FncPtrType f = FncPtrType()) const;

  /**
   * The number of accepted points so far.
   */
  inline long n() const;

  /**
   * The number of calls to generate() so far. Note that the number of
   * calls to the specified functions may be larger. It is up to the
   * user to keep track of those.
   */
  inline long N() const;

  /**
   * The ratio of the number of accepted and number of tried points
   * n()/N();
   */
  inline double efficiency() const;

  /**
   * Return the number of active cells created so far.
   */
  inline int nBins() const;

  /**
   * Return the maximum depth of any tree of cells used.
   */
  inline int depth() const;

  /**
   * Return the current overestimation of the full integral of all
   * specified functions over the unit volume.
   */
  inline double maxInt() const;
  //@}

  /** @name Access to member variables. */
  //@{
  /**
   * The minimum cell size considered for this generation.
   */
  inline double eps() const;

  /**
   * The safety margin used to multiply the highest found function
   * value in a cell when setting its overestimated value.
   */
  inline double margin() const;

  /**
   * The number of points used to initialize the tree of cells to use
   * in the generation.
   */
  inline size_type nTry() const;

  /**
   * The maximum number of attempts to generate a phase space point,
   * or to find non-zero points in the initialization.
   */
  inline long maxTry() const;

  /**
   * Returns true if generating random numbers are so cheap that a new
   * one can be thrown everytime a sub-cell is chosen. Otherwise
   * random numbers used for this will be reused.
   */
  inline bool cheapRandom() const;

  /**
   * The number of functions used.
   */
  inline size_type size() const;

  /**
   * Returns true if the generator is currently in a state of
   * compensating an erroneous overestimation of one of the specified
   * functions. If so, the integral and the generated points are not
   * statistically correct.
   */
  inline bool compensating();

  /**
   * Return an estimate of how many points need to be sampled before
   * the generator finishes compensating.
   */
  inline long compleft() const;

  /**
   * Return a vector with information about all cells.
   */
  vector<ACDCGenCellInfo> extractCellInfo() const;
  //@}

public:

  /** @name Functions related to the random number generator. */
  //@{
  /**
   * Set to true if generating random numbers are so cheap that a new
   * one can be thrown everytime a sub-cell is chosen. Otherwise
   * random numbers used for this will be reused.
   */
  inline void cheapRandom(bool b);

  /**
   * Set a new random number generator.
   */
  inline void setRnd(Rnd * r);

  /**
   * Double precision number in the interval ]0,1[.
   */
  inline double rnd() const;

  /**
   * Double precision number in the interval ]lo,up[.
   */
  inline double rnd(double lo, double up) const;

  /**
   * Fill the r vector with doubles r[i] in the interval ]lo[i],up[i][.
   */
  inline void rnd(const DVector & lo, const DVector & up, DVector & r)const;

  /**
   * Fill the D first elements in the r vector with doubles in the
   * interval ]0,1[.
   */
  inline void rnd(DimType D, DVector & r) const;

  /**
   * Integer in the interval [0,x[
   */
  inline long rndInt(long x) const;
  //@}

public:

  /**
   * This function is to be used in ThePEG for output to
   * a persistent stream and will not work properly for normal
   * ostreams.
   */
  template <typename POStream>
  void output(POStream &) const;

  /**
   * This function is to be used in ThePEG for input from a persistent
   * stream and will not work properly for normal istreams.
   */
  template <typename PIStream>
  void input(PIStream &);

private:

  /**
   * Calculate the overestimated integral for all functions.
   */
  inline double doMaxInt();

  /**
   * Return the vector of functions.
   */
  inline const FncVector & functions() const;

  /**
   * Return the i'th function.
   */
  inline FncPtrType function(size_type i) const;

  /**
   * Return a vector with the dimensions of all functions.
   */
  inline const DimVector & dimensions() const;

  /**
   * Return the dimension of the i'th function.
   */
  inline DimType dimension(size_type i) const;

  /**
   * Return the dimension of the function chosen for the last
   * generated point.
   */
  inline DimType lastDimension() const;

  /**
   * Return the roots of all cell trees.
   */
  inline const CellVector & cells() const;

  /**
   * Return the root cell for the i'th function.
   */
  inline ACDCGenCell * cell(size_type i) const;

  /**
   * Return the root cell for the function chosen for the last
   * generated point.
   */
  inline ACDCGenCell * lastPrimary() const;

  /**
   * Return a vector with the incremental sum of overestimated
   * integrals for each function.
   */
  inline const DVector & sumMaxInts() const;

  /**
   * Return the cell chosen for the last generated point.
   */
  inline ACDCGenCell * lastCell() const;


  /**
   * Choose a function according to its overestimated integral and
   * choose a cell to generate a point in.
   */
  inline void chooseCell(DVector & lo, DVector & up);

  /**
   * Start the compensation procedure for the last chosen cell when a
   * function velue has been found which exceeds the previous
   * overestimation.
   */
  inline void  compensate(const DVector & lo, const DVector & up);

private:

  /**
   * The random number generator to be used for this Generator.
   */
  RndType * theRnd;
  
  /**
   * The number of accepted points (weight > 0) so far.
   */
  long theNAcc;

  /**
   * The number of attempted points so far.
   */
  long theN;

  /**
   * The number of attempts per function so far.
   */
  vector<long> theNI;

  /**
   * The summed weights per function so far.
   */
  DVector theSumW;

  /**
   * The summed squared weights per function so far.
   */
  DVector theSumW2;

  /**
   * The smallest possible division allowed.
   */
  double theEps;

  /**
   * The factor controlling the loss of efficiency when compensating.
   */
  double theMargin;

  /**
   * The number of points to use to find initial average.
   */
  size_type theNTry;

  /**
   * The maximum number of attempts to generate a phase space point,
   * or to find non-zero points in the initialization.
   */
  long theMaxTry;

  /**
   * True if generating random numbers are so cheap that a new one can
   * be thrown everytime a sub-cell is chosen. Otherwise random
   * numbers used for this will be reused.
   */
  bool useCheapRandom;

  /**
   * A vector of functions.
   */
  FncVector theFunctions;

  /**
   * The dimensions of the functions in theFunctions.
   */
  DimVector theDimensions;

  /**
   * The root of the cell tree for the functions in theFunctions.
   */
  CellVector thePrimaryCells;

  /**
   * The accumulated sum of overestimated integrals of the functions
   * in theFunctions.
   */
  DVector theSumMaxInts;

  /**
   * The last index chosen
   */
  size_type theLast;

  /**
   * The last cell chosen.
   */
  ACDCGenCell * theLastCell;

  /**
   * The last point generated.
   */
  DVector theLastPoint;

  /**
   * The function value of the last point.
   */
  double theLastF;

  /**
   * A helper struct representing a level of compensation.
   */
  struct Level {

    /**
     * The number of attempts after which this level disapprears.
     */
    long lastN;

    /**
     * The previous max value in the Cell to compensate.
     */
    double g;

    /**
     * The cell which is being compensated.
     */
    ACDCGenCell * cell;

    /**
     * The index corresponding to the cell being compensated.
     */
    size_type index;

    /**
     * The integration limits for the cell being compensated.
     */
    DVector up;
    /**
     * The integration limits for the cell being compensated.
     */
    DVector lo;

  };

  /**
   * A vector (stack) of levels
   */
  typedef vector<Level> LevelVector;

  /**
   * The vector (stack) of levels
   */
  LevelVector levels;


  /**
   * This is a help struct to perform the divide-and-conquer slicing
   * of cells before starting the compensation procedure.
   */
  struct Slicer {

    /**
     * The constructor takes the number of dimensions of the function
     * approximated by the current cell, the ACDCGen object
     * controlling the generation and the lower-left and upper-right
     * corners of the cell to be sliced.
     */
    Slicer(DimType, ACDCGen &, const DVector &, const DVector &);

    /**
     * The constructor used internally when diagonally chopped-off
     * cells need to be sliced themselves.
     */
    Slicer(DimType Din, const Slicer & s, ACDCGenCell * cellin,
	   const DVector & loin, const DVector & xselin, const DVector & upin,
	   double fselin);

    /**
     * Destructor.
     */
    ~Slicer();

    /**
     * Called from both constructors to do the actual work.
     */
    void divideandconquer();

    /**
     * Initialize the procedure, finding the slicing points around the
     * current point
     */
    void init();

    /**
     * Do the slicing and increase the overestimate of the function in
     * the resulting cell. If a point with a higher function value has
     * been found repeat the slicing around that point etc.
     */
    void slice();

    /**
     * After slicing a cell, find the maximum function value found in
     * the resulting cell. Also set the minimum value found.
     */
    double shiftmaxmin();

    /**
     * Find the slice point of the current cell in the direction given.
     */
    void dohalf(DimType);

    /**
     * If split is in more than one dimensions check the overestimate
     * for the chopped-off cell.
     */
    void checkdiag(ACDCGenCell * cell, DimType d, double lod, double upd);

    /**
     * The dimension of the cell to be sliced.
     */
    DimType D;

    /**
     * The lower-left corner of the current cell.
     */
    DVector lo;
    /**
     * The  upper-right corner of the current cell.
     */
    DVector up;

    /**
     * The lower-left point found closest to the current
     * point which gives a function value below the overestimate.
     */
    DVector xcl;
    /**
     * The upper-right point found closest to the current point which
     * gives a function value below the overestimate.
     */
    DVector xcu;

    /**
     * The lower-left point furthest away from the
     * current point which gives a function value abov the
     * overestimate.
     */
    DVector xhl;
    /**
     * The upper-right point furthest away from the
     * current point which gives a function value abov the
     * overestimate.
     */
    DVector xhu;

    /**
     * The function values found for the xhl point.
     */
    DVector fhl;

    /**
     * The function values found for the xhu point.
     */
    DVector fhu;

    /**
     * The current point around which we are slicing.
     */
    DVector xsel;

    /**
     * The function value in the current point.
     */
    double fsel;

    /**
     * The current cell.
     */
    ACDCGenCell * current;

    /**
     * The cell which resulted from the first slicing procedure. This
     * is the first one to get an increased overestimate and is the
     * one to be compensated. All other cells with increased
     * overestimates are sub-cells to this one
     */
    ACDCGenCell * first;

    /**
     * The lower-left corner of the 'first' cell.
     */
    DVector firstlo;
    /**
     * The upper-right corner of the 'first' cell.
     */
    DVector firstup;

    /**
     * A pointer to the function to be used.
     */
    FncPtr f;

    /**
     * The epsilon() value obtained from the controlling
     * ACDCGen object.
     */
    double epsilon;

    /**
     * The margin() value obtained from the controlling
     * ACDCGen object.
     */
    double margin;

    /**
     * The dimensions to slice in rated by the resulting fractional
     * volume of the resulting slice. If the dimension is negative it
     * means that the cell should be slized from below.
     */
    multimap<double,DimType> rateslice;

    /**
     * The minimu function value found in the current sliced cell (set
     * by shiftmaxmin()).
     */
    double minf;

    /**
     * If true, then the whole original cell should compensated in the
     * continued generation.
     */
    bool wholecomp;

  };

public:

  /** The maximum recursion depth of the compensation so far. */
  static size_type maxsize;

private:

  /**
   * Copy constructor is private and not implemented.
   */
  ACDCGen(const ACDCGen &);

  /**
   * Assignment is private and not implemented.
   */
  ACDCGen & operator=(const ACDCGen &);

};

}

#include "ACDCGen.icc"

#endif