/usr/include/ida/ida_spils.h is in libsundials-dev 2.7.0+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | /*
* -----------------------------------------------------------------
* $Revision: 4378 $
* $Date: 2015-02-19 10:55:14 -0800 (Thu, 19 Feb 2015) $
* -----------------------------------------------------------------
* Programmers: Alan Hindmarsh, Radu Serban and Aaron Collier @ LLNL
* -----------------------------------------------------------------
* LLNS Copyright Start
* Copyright (c) 2014, Lawrence Livermore National Security
* This work was performed under the auspices of the U.S. Department
* of Energy by Lawrence Livermore National Laboratory in part under
* Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
* Produced at the Lawrence Livermore National Laboratory.
* All rights reserved.
* For details, see the LICENSE file.
* LLNS Copyright End
* -----------------------------------------------------------------
* This is the common header file for the Scaled and Preconditioned
* Iterative Linear Solvers in IDA.
* -----------------------------------------------------------------
*/
#ifndef _IDASPILS_H
#define _IDASPILS_H
#include <sundials/sundials_iterative.h>
#include <sundials/sundials_nvector.h>
#ifdef __cplusplus /* wrapper to enable C++ usage */
extern "C" {
#endif
/*
* -----------------------------------------------------------------
* IDASPILS return values
* -----------------------------------------------------------------
*/
#define IDASPILS_SUCCESS 0
#define IDASPILS_MEM_NULL -1
#define IDASPILS_LMEM_NULL -2
#define IDASPILS_ILL_INPUT -3
#define IDASPILS_MEM_FAIL -4
#define IDASPILS_PMEM_NULL -5
/*
* -----------------------------------------------------------------
* Type : IDASpilsPrecSetupFn
* -----------------------------------------------------------------
* The optional user-supplied functions PrecSetup and PrecSolve
* together must define the left preconditoner matrix P
* approximating the system Jacobian matrix
* J = dF/dy + c_j*dF/dy'
* (where the DAE system is F(t,y,y') = 0), and solve the linear
* systems P z = r. PrecSetup is to do any necessary setup
* operations, and PrecSolve is to compute the solution of
* P z = r.
*
* The preconditioner setup function PrecSetup is to evaluate and
* preprocess any Jacobian-related data needed by the
* preconditioner solve function PrecSolve. This might include
* forming a crude approximate Jacobian, and performing an LU
* factorization on it. This function will not be called in
* advance of every call to PrecSolve, but instead will be called
* only as often as necessary to achieve convergence within the
* Newton iteration. If the PrecSolve function needs no
* preparation, the PrecSetup function can be NULL.
*
* Each call to the PrecSetup function is preceded by a call to
* the system function res with the same (t,y,y') arguments.
* Thus the PrecSetup function can use any auxiliary data that is
* computed and saved by the res function and made accessible
* to PrecSetup.
*
* A preconditioner setup function PrecSetup must have the
* prototype given below. Its parameters are as follows:
*
* tt is the current value of the independent variable t.
*
* yy is the current value of the dependent variable vector,
* namely the predicted value of y(t).
*
* yp is the current value of the derivative vector y',
* namely the predicted value of y'(t).
*
* rr is the current value of the residual vector F(t,y,y').
*
* c_j is the scalar in the system Jacobian, proportional to 1/hh.
*
* user_data is a pointer to user data, the same as the user_data
* parameter passed to IDASetUserData.
*
* tmp1, tmp2, tmp3 are pointers to vectors of type N_Vector
* which can be used by an IDASpilsPrecSetupFn routine
* as temporary storage or work space.
*
* NOTE: If the user's preconditioner needs other quantities,
* they are accessible as follows: hcur (the current stepsize)
* and ewt (the error weight vector) are accessible through
* IDAGetCurrentStep and IDAGetErrWeights, respectively (see
* ida.h). The unit roundoff is available as
* UNIT_ROUNDOFF defined in sundials_types.h
*
* The IDASpilsPrecSetupFn should return
* 0 if successful,
* a positive int if a recoverable error occurred, or
* a negative int if a nonrecoverable error occurred.
* In the case of a recoverable error return, the integrator will
* attempt to recover by reducing the stepsize (which changes cj).
* -----------------------------------------------------------------
*/
typedef int (*IDASpilsPrecSetupFn)(realtype tt,
N_Vector yy, N_Vector yp, N_Vector rr,
realtype c_j, void *user_data,
N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3);
/*
* -----------------------------------------------------------------
* Type : IDASpilsPrecSolveFn
* -----------------------------------------------------------------
* The optional user-supplied function PrecSolve must compute a
* solution to the linear system P z = r, where P is the left
* preconditioner defined by the user. If no preconditioning
* is desired, pass NULL for PrecSolve to IDASp*.
*
* A preconditioner solve function PrecSolve must have the
* prototype given below. Its parameters are as follows:
*
* tt is the current value of the independent variable t.
*
* yy is the current value of the dependent variable vector y.
*
* yp is the current value of the derivative vector y'.
*
* rr is the current value of the residual vector F(t,y,y').
*
* rvec is the input right-hand side vector r.
*
* zvec is the computed solution vector z.
*
* c_j is the scalar in the system Jacobian, proportional to 1/hh.
*
* delta is an input tolerance for use by PrecSolve if it uses an
* iterative method in its solution. In that case, the
* the residual vector r - P z of the system should be
* made less than delta in weighted L2 norm, i.e.,
* sqrt [ Sum (Res[i]*ewt[i])^2 ] < delta .
* Note: the error weight vector ewt can be obtained
* through a call to the routine IDAGetErrWeights.
*
* user_data is a pointer to user data, the same as the user_data
* parameter passed to IDASetUserData.
*
* tmp is an N_Vector which can be used by the PrecSolve
* routine as temporary storage or work space.
*
* The IDASpilsPrecSolveFn should return
* 0 if successful,
* a positive int if a recoverable error occurred, or
* a negative int if a nonrecoverable error occurred.
* Following a recoverable error, the integrator will attempt to
* recover by updating the preconditioner and/or reducing the
* stepsize.
* -----------------------------------------------------------------
*/
typedef int (*IDASpilsPrecSolveFn)(realtype tt,
N_Vector yy, N_Vector yp, N_Vector rr,
N_Vector rvec, N_Vector zvec,
realtype c_j, realtype delta, void *user_data,
N_Vector tmp);
/*
* -----------------------------------------------------------------
* Type : IDASpilsJacTimesVecFn
* -----------------------------------------------------------------
* The user-supplied function jtimes is to generate the product
* J*v for given v, where J is the Jacobian matrix
* J = dF/dy + c_j*dF/dy'
* or an approximation to it, and v is a given vector.
* It should return 0 if successful and a nonzero int otherwise.
*
* A function jtimes must have the prototype given below. Its
* parameters are as follows:
*
* tt is the current value of the independent variable.
*
* yy is the current value of the dependent variable vector,
* namely the predicted value of y(t).
*
* yp is the current value of the derivative vector y',
* namely the predicted value of y'(t).
*
* rr is the current value of the residual vector F(t,y,y').
*
* v is the N_Vector to be multiplied by J.
*
* Jv is the output N_Vector containing J*v.
*
* c_j is the scalar in the system Jacobian, proportional
* to 1/hh.
*
* user_data is a pointer to user data, the same as the
* pointer passed to IDASetUserData.
*
* tmp1, tmp2 are two N_Vectors which can be used by Jtimes for
* work space.
* -----------------------------------------------------------------
*/
typedef int (*IDASpilsJacTimesVecFn)(realtype tt,
N_Vector yy, N_Vector yp, N_Vector rr,
N_Vector v, N_Vector Jv,
realtype c_j, void *user_data,
N_Vector tmp1, N_Vector tmp2);
/*
* -----------------------------------------------------------------
* Optional inputs to the IDASPILS linear solver
* -----------------------------------------------------------------
*
* IDASpilsSetPreconditioner specifies the PrecSetup and PrecSolve
* functions.
* Default is NULL for both arguments.
* IDASpilsSetJacTimesVecFn specifies the jtimes function.
* Default is to use an internal finite difference
* approximation routine.
* IDASpilsSetGSType specifies the type of Gram-Schmidt
* orthogonalization to be used. This must be one of
* the two enumeration constants MODIFIED_GS or
* CLASSICAL_GS defined in iterativ.h. These correspond
* to using modified Gram-Schmidt and classical
* Gram-Schmidt, respectively.
* Default value is MODIFIED_GS.
* Only for IDASPGMR.
* IDASpilsSetMaxRestarts specifies the maximum number of restarts
* to be used in the GMRES algorithm. maxrs must be a
* non-negative integer. Pass 0 to specify no restarts.
* Default is 5.
* Only for IDASPGMR.
* IDASpbcgSetMaxl specifies the maximum Krylov subspace size.
* Default is 5.
* Only for IDASPBCG and IDASPTFQMR.
* IDASpilsSetEpsLin specifies the factor in the linear iteration
* convergence test constant.
* Default is 0.05
* IDASpilsSetIncrementFactor specifies a factor in the increments
* to yy used in the difference quotient approximations
* to matrix-vector products Jv.
* Default is 1.0
*
* The return value of IDASpilsSet* is one of:
* IDASPILS_SUCCESS if successful
* IDASPILS_MEM_NULL if the ida memory was NULL
* IDASPILS_LMEM_NULL if the linear solver memory was NULL
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASpilsSetPreconditioner(void *ida_mem,
IDASpilsPrecSetupFn pset,
IDASpilsPrecSolveFn psolve);
SUNDIALS_EXPORT int IDASpilsSetJacTimesVecFn(void *ida_mem,
IDASpilsJacTimesVecFn jtv);
SUNDIALS_EXPORT int IDASpilsSetGSType(void *ida_mem, int gstype);
SUNDIALS_EXPORT int IDASpilsSetMaxRestarts(void *ida_mem, int maxrs);
SUNDIALS_EXPORT int IDASpilsSetMaxl(void *ida_mem, int maxl);
SUNDIALS_EXPORT int IDASpilsSetEpsLin(void *ida_mem, realtype eplifac);
SUNDIALS_EXPORT int IDASpilsSetIncrementFactor(void *ida_mem, realtype dqincfac);
/*
* -----------------------------------------------------------------
* Optional outputs from the IDASPILS linear solver
*----------------------------------------------------------------
*
* IDASpilsGetWorkSpace returns the real and integer workspace used
* by IDASPILS.
* IDASpilsGetNumPrecEvals returns the number of preconditioner
* evaluations, i.e. the number of calls made to PrecSetup
* with jok==FALSE.
* IDASpilsGetNumPrecSolves returns the number of calls made to
* PrecSolve.
* IDASpilsGetNumLinIters returns the number of linear iterations.
* IDASpilsGetNumConvFails returns the number of linear
* convergence failures.
* IDASpilsGetNumJtimesEvals returns the number of calls to jtimes
* IDASpilsGetNumResEvals returns the number of calls to the user
* res routine due to finite difference Jacobian times vector
* evaluation.
* IDASpilsGetLastFlag returns the last error flag set by any of
* the IDASPILS interface functions.
*
* The return value of IDASpilsGet* is one of:
* IDASPILS_SUCCESS if successful
* IDASPILS_MEM_NULL if the ida memory was NULL
* IDASPILS_LMEM_NULL if the linear solver memory was NULL
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASpilsGetWorkSpace(void *ida_mem, long int *lenrwLS, long int *leniwLS);
SUNDIALS_EXPORT int IDASpilsGetNumPrecEvals(void *ida_mem, long int *npevals);
SUNDIALS_EXPORT int IDASpilsGetNumPrecSolves(void *ida_mem, long int *npsolves);
SUNDIALS_EXPORT int IDASpilsGetNumLinIters(void *ida_mem, long int *nliters);
SUNDIALS_EXPORT int IDASpilsGetNumConvFails(void *ida_mem, long int *nlcfails);
SUNDIALS_EXPORT int IDASpilsGetNumJtimesEvals(void *ida_mem, long int *njvevals);
SUNDIALS_EXPORT int IDASpilsGetNumResEvals(void *ida_mem, long int *nrevalsLS);
SUNDIALS_EXPORT int IDASpilsGetLastFlag(void *ida_mem, long int *flag);
/*
* -----------------------------------------------------------------
* The following function returns the name of the constant
* associated with an IDASPILS return flag
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT char *IDASpilsGetReturnFlagName(long int flag);
#ifdef __cplusplus
}
#endif
#endif
|