This file is indexed.

/usr/include/ida/ida_sparse.h is in libsundials-dev 2.7.0+dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
 * -----------------------------------------------------------------
 * $Revision: 4423 $
 * $Date: 2015-03-08 17:23:10 -0700 (Sun, 08 Mar 2015) $
 * ----------------------------------------------------------------- 
 * Programmer(s): Carol S. Woodward @ LLNL
 * -----------------------------------------------------------------
 * LLNS Copyright Start
 * Copyright (c) 2014, Lawrence Livermore National Security
 * This work was performed under the auspices of the U.S. Department 
 * of Energy by Lawrence Livermore National Laboratory in part under 
 * Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
 * Produced at the Lawrence Livermore National Laboratory.
 * All rights reserved.
 * For details, see the LICENSE file.
 * LLNS Copyright End
 * -----------------------------------------------------------------
 * This is the header file for the Sparse linear solver module in IDA.
 * -----------------------------------------------------------------
 */

#ifndef _IDASPARSE_H
#define _IDASPARSE_H

#include <sundials/sundials_sparse.h>
#include <sundials/sundials_nvector.h>

#ifdef __cplusplus  /* wrapper to enable C++ usage */
extern "C" {
#endif

/*
 * =================================================================
 * I D A S S P A R S E    C O N S T A N T S
 * =================================================================
 */

/* 
 * -----------------------------------------------------------------
 * IDASLS return values 
 * -----------------------------------------------------------------
 */

#define IDASLS_SUCCESS           0
#define IDASLS_MEM_NULL         -1
#define IDASLS_LMEM_NULL        -2
#define IDASLS_ILL_INPUT        -3
#define IDASLS_MEM_FAIL         -4
#define IDASLS_JAC_NOSET        -5
#define IDASLS_PACKAGE_FAIL     -6

/* Additional last_flag values */

#define IDASLS_JACFUNC_UNRECVR  -7
#define IDASLS_JACFUNC_RECVR    -8

/* Return values for the adjoint module */
#define IDASLS_NO_ADJ           -101
#define IDASLS_LMEMB_NULL       -102

/*
 * =================================================================
 * PART I:  F O R W A R D    P R O B L E M S
 * =================================================================
 */

/*
 * -----------------------------------------------------------------
 * FUNCTION TYPES
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Types : IDASlsSparseJacFn
 * -----------------------------------------------------------------
 *
 * A sparse Jacobian approximation function jaceval must be of type 
 * IDASlsSparseJacFn.
 * Its parameters are:                     
 *                                                                
 * t   is the current value of the independent variable t.        
 *                                                                
 * c_j is the scalar in the system Jacobian, proportional to 
 *     the inverse of the step size h.
 *                                                                
 * y   is the current value of the dependent variable vector,     
 *     namely the predicted value of y(t).                     
 *                                                                
 * yp  is the current value of the derivative vector y',          
 *     namely the predicted value of y'(t).                    
 *                                                                
 * r   is the residual vector F(tt,yy,yp).                     
 *                                                                
 * JacMat is the compressed sparse column matrix (of type SlsMat)
 *     to be loaded by an IDASlsSparseJacFn routine with an approximation
 *     to the system Jacobian matrix
 *            J = dF/dy' + c_j*dF/dy                            
 *     at the given point (t,y,y'), where the ODE system is    
 *     given by F(t,y,y') = 0.
 *     Note that JacMat is NOT preset to zero!
 *     Matrix data is for the nonzero entries of the Jacobian are stored in
 *     compressed column format.  Row indices of entries in 
 *     column j are stored in J->data[colptrs[j]] 
 *     through J->data[colptrs[j+i]-1]
 *     and corresponding numerical values of the Jacobian are stored 
 *     in the same entries of a.
 * 
 * user_data is a pointer to user Jacobian data - the same as the    
 *     user_data parameter passed to IDASetRdata.                     
 *                                                                
 * tmp1, tmp2, tmp3 are pointers to memory allocated for          
 *     N_Vectors which can be used by an IDASparseJacFn routine 
 *     as temporary storage or work space.                     
 *                                                                
 * A IDASlsSparseJacFn should return                                
 *     0 if successful,                                           
 *     a positive int if a recoverable error occurred, or         
 *     a negative int if a nonrecoverable error occurred.         
 * In the case of a recoverable error return, the integrator will 
 * attempt to recover by reducing the stepsize (which changes cj).
 *
 * -----------------------------------------------------------------
 *
  * NOTE: If the user's Jacobian routine needs other quantities,   
 *     they are accessible as follows: hcur (the current stepsize)
 *     and ewt (the error weight vector) are accessible through   
 *     IDAGetCurrentStep and IDAGetErrWeights, respectively 
 *     (see ida.h). The unit roundoff is available as 
 *     UNIT_ROUNDOFF defined in sundials_types.h.
 *
 * -----------------------------------------------------------------
 */
  
  
typedef int (*IDASlsSparseJacFn)(realtype t, realtype c_j,
		     N_Vector y, N_Vector yp, N_Vector r, 
		     SlsMat JacMat, void *user_data,
		     N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

/*
 * =================================================================
 *            E X P O R T E D    F U N C T I O N S 
 * =================================================================
 */

/*
 * -----------------------------------------------------------------
 * Optional inputs to the IDASPARSE linear solver
 * -----------------------------------------------------------------
 * IDASlsSetSparseJacFn specifies the Jacobian approximation
 * routine to be used for a sparse direct linear solver.
 *
 * The return value is one of:
 *    IDASLS_SUCCESS   if successful
 *    IDASLS_MEM_NULL  if the IDA memory was NULL
 *    IDASLS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int IDASlsSetSparseJacFn(void *ida_mem, IDASlsSparseJacFn jac);

/*
 * -----------------------------------------------------------------
 * Optional outputs from the IDASLS linear solver
 * -----------------------------------------------------------------
 *
 * IDASlsGetWorkSpace   returns the real and integer workspace used
 *                      by the direct linear solver.
 * IDASlsGetNumJacEvals returns the number of calls made to the
 *                      Jacobian evaluation routine jac.
 * IDASlsGetLastFlag    returns the last error flag set by any of
 *                      the IDADLS interface functions.
 *
 * The return value of IDADlsGet* is one of:
 *    IDASLS_SUCCESS   if successful
 *    IDASLS_MEM_NULL  if the IDA memory was NULL
 *    IDASLS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int IDASlsGetNumJacEvals(void *ida_mem, long int *njevals);
SUNDIALS_EXPORT int IDASlsGetLastFlag(void *ida_mem, long int *flag);

/*
 * -----------------------------------------------------------------
 * The following function returns the name of the constant 
 * associated with a IDASLS return flag
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT char *IDASlsGetReturnFlagName(long int flag);

/*
 * =================================================================
 * PART II:  B A C K W A R D    P R O B L E M S
 * =================================================================
 */

/*
 * -----------------------------------------------------------------
 * FUNCTION TYPES
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Type: IDASlsSparseJacFnB
 * -----------------------------------------------------------------
 * A sparse Jacobian approximation function JacB for the adjoint
 * (backward) problem must have the prototype given below. 
 * -----------------------------------------------------------------
 */

typedef int (*IDASlsSparseJacFnB)(realtype tt, realtype c_jB, 
	      	     N_Vector yy, N_Vector yp,
		     N_Vector yyB, N_Vector ypB, N_Vector rrB, 
		     SlsMat JacMatB, void *user_dataB, 
		     N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);


/*
 * -----------------------------------------------------------------
 * Type: IDASlsSparseJacFnBS
 * -----------------------------------------------------------------
 * A dense Jacobian approximation function JacBS for the adjoint
 * (backward) problem, sensitivity-dependent case, must have the
 *  prototype given below. 
 * -----------------------------------------------------------------
 */

typedef int (*IDASlsSparseJacFnBS)(realtype tt, realtype c_jB, 
	      	     N_Vector yy, N_Vector yp,
		     N_Vector *yS, N_Vector *ypS,
		     N_Vector yyB, N_Vector ypB, N_Vector rrB, 
		     SlsMat JacMatB, void *user_dataB, 
		     N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);


/*
 * -----------------------------------------------------------------
 * EXPORTED FUNCTIONS 
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Functions: IDASlsSetSparseJacFnB and IDASlsSetSparseJacFnBS
 * -----------------------------------------------------------------
 * IDASlsSetSparseJacFnB specifies the sparse Jacobian functions to 
 * be used by a IDASPARSE linear solver for the backward integration phase
 * when the backward problem does not depend on forward sensitivities.
 * IDASlsSetSparseJacFnBS specifies the Jacobian
 * functions when the backward problem does depend on sensitivities.
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int IDASlsSetSparseJacFnB(void *ida_mem, int which, 
					  IDASlsSparseJacFnB jacB);
SUNDIALS_EXPORT int IDASlsSetSparseJacFnBS(void *ida_mem, int which, 
					  IDASlsSparseJacFnBS jacBS);


#ifdef __cplusplus
}
#endif

#endif