This file is indexed.

/usr/include/ida/ida_direct.h is in libsundials-dev 2.7.0+dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*
 * -----------------------------------------------------------------
 * $Revision: 4525 $
 * $Date: 2015-08-12 16:28:00 -0700 (Wed, 12 Aug 2015) $
 * ----------------------------------------------------------------- 
 * Programmer: Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * LLNS Copyright Start
 * Copyright (c) 2014, Lawrence Livermore National Security
 * This work was performed under the auspices of the U.S. Department 
 * of Energy by Lawrence Livermore National Laboratory in part under 
 * Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
 * Produced at the Lawrence Livermore National Laboratory.
 * All rights reserved.
 * For details, see the LICENSE file.
 * LLNS Copyright End
 * -----------------------------------------------------------------
 * Common header file for the direct linear solvers in IDA.
 * -----------------------------------------------------------------
 */

#ifndef _IDADLS_H
#define _IDADLS_H

#include <sundials/sundials_direct.h>
#include <sundials/sundials_nvector.h>

#ifdef __cplusplus  /* wrapper to enable C++ usage */
extern "C" {
#endif

/*
 * =================================================================
 *              I D A D I R E C T     C O N S T A N T S
 * =================================================================
 */

/* 
 * -----------------------------------------------------------------
 * IDADLS return values 
 * -----------------------------------------------------------------
 */

#define IDADLS_SUCCESS           0
#define IDADLS_MEM_NULL         -1
#define IDADLS_LMEM_NULL        -2
#define IDADLS_ILL_INPUT        -3
#define IDADLS_MEM_FAIL         -4

/* Additional last_flag values */

#define IDADLS_JACFUNC_UNRECVR  -5
#define IDADLS_JACFUNC_RECVR    -6

/*
 * =================================================================
 *              F U N C T I O N   T Y P E S
 * =================================================================
 */

/*
 * -----------------------------------------------------------------
 * Types : IDADlsDenseJacFn
 * -----------------------------------------------------------------
 *
 * A dense Jacobian approximation function djac must be of type 
 * IDADlsDenseJacFn.
 * Its parameters are:                     
 *                                                                
 * N   is the problem size, and length of all vector arguments.   
 *                                                                
 * t   is the current value of the independent variable t.        
 *                                                                
 * y   is the current value of the dependent variable vector,     
 *     namely the predicted value of y(t).                     
 *                                                                
 * yp  is the current value of the derivative vector y',          
 *     namely the predicted value of y'(t).                    
 *                                                                
 * r   is the residual vector F(tt,yy,yp).                     
 *                                                                
 * c_j is the scalar in the system Jacobian, proportional to 
 *     the inverse of the step size h.
 *                                                                
 * user_data is a pointer to user Jacobian data - the same as the    
 *     user_data parameter passed to IDASetUserData.                     
 *                                                                
 * Jac is the dense matrix (of type DlsMat) to be loaded by  
 *     an IDADlsDenseJacFn routine with an approximation to the   
 *     system Jacobian matrix                                  
 *            J = dF/dy + c_j *dF/dy'                            
 *     at the given point (t,y,y'), where the ODE system is    
 *     given by F(t,y,y') = 0.
 *     Note that Jac is NOT preset to zero!
 *                                                                
 * tmp1, tmp2, tmp3 are pointers to memory allocated for          
 *     N_Vectors which can be used by an IDADlsDenseJacFn routine 
 *     as temporary storage or work space.                     
 *                                                                
 * A IDADlsDenseJacFn should return                                
 *     0 if successful,                                           
 *     a positive int if a recoverable error occurred, or         
 *     a negative int if a nonrecoverable error occurred.         
 * In the case of a recoverable error return, the integrator will 
 * attempt to recover by reducing the stepsize (which changes c_j).
 *
 * -----------------------------------------------------------------
 *
 * NOTE: The following are two efficient ways to load a dense Jac:         
 * (1) (with macros - no explicit data structure references)      
 *     for (j=0; j < Neq; j++) {                                  
 *       col_j = LAPACK_DENSE_COL(Jac,j);                                 
 *       for (i=0; i < Neq; i++) {                                
 *         generate J_ij = the (i,j)th Jacobian element           
 *         col_j[i] = J_ij;                                       
 *       }                                                        
 *     }                                                          
 * (2) (without macros - explicit data structure references)      
 *     for (j=0; j < Neq; j++) {                                  
 *       col_j = (Jac->data)[j];                                   
 *       for (i=0; i < Neq; i++) {                                
 *         generate J_ij = the (i,j)th Jacobian element           
 *         col_j[i] = J_ij;                                       
 *       }                                                        
 *     }                                                          
 * A third way, using the LAPACK_DENSE_ELEM(A,i,j) macro, is much less   
 * efficient in general.  It is only appropriate for use in small 
 * problems in which efficiency of access is NOT a major concern. 
 *                                                                
 * NOTE: If the user's Jacobian routine needs other quantities,   
 *     they are accessible as follows: hcur (the current stepsize)
 *     and ewt (the error weight vector) are accessible through   
 *     IDAGetCurrentStep and IDAGetErrWeights, respectively, but this
 *     requires including in user_data a pointer to the solver memory.
 *     The unit roundoff is available as UNIT_ROUNDOFF defined in
 *     sundials_types.h.
 *
 * -----------------------------------------------------------------
 */
  
  
typedef int (*IDADlsDenseJacFn)(long int N, realtype t, realtype c_j,
				N_Vector y, N_Vector yp, N_Vector r, 
				DlsMat Jac, void *user_data,
				N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

/*
 * -----------------------------------------------------------------
 * Types : IDADlsBandJacFn
 * -----------------------------------------------------------------
 * A banded Jacobian approximation function bjac must have the    
 * prototype given below. Its parameters are:                     
 *                                                                
 * Neq is the problem size, and length of all vector arguments.   
 *                                                                
 * mupper is the upper bandwidth of the banded Jacobian matrix.   
 *                                                                
 * mlower is the lower bandwidth of the banded Jacobian matrix.   
 *                                                                
 * tt is the current value of the independent variable t.        
 *                                                                
 * yy is the current value of the dependent variable vector,     
 *    namely the predicted value of y(t).                     
 *                                                                
 * yp is the current value of the derivative vector y',          
 *    namely the predicted value of y'(t).                    
 *                                                                
 * rr is the residual vector F(tt,yy,yp).                     
 *                                                                
 * c_j is the scalar in the system Jacobian, proportional to 1/hh.
 *                                                                
 * user_data  is a pointer to user Jacobian data - the same as the    
 *    user_data parameter passed to IDASetUserData.                      
 *                                                                
 * Jac is the band matrix (of type BandMat) to be loaded by    
 *     an IDADlsBandJacFn routine with an approximation to the    
 *     system Jacobian matrix                                  
 *            J = dF/dy + c_j *dF/dy'                             
 *     at the given point (t,y,y'), where the DAE system is    
 *     given by F(t,y,y') = 0.  Jac is preset to zero, so only 
 *     the nonzero elements need to be loaded.  See note below.
 *                                                                
 * tmp1, tmp2, tmp3 are pointers to memory allocated for          
 *     N_Vectors which can be used by an IDADlsBandJacFn routine  
 *     as temporary storage or work space.                     
 *                                                                
 * An IDADlsBandJacFn function should return                                 
 *     0 if successful,                                           
 *     a positive int if a recoverable error occurred, or         
 *     a negative int if a nonrecoverable error occurred.         
 * In the case of a recoverable error return, the integrator will 
 * attempt to recover by reducing the stepsize (which changes c_j).
 *
 * -----------------------------------------------------------------
 *
 * NOTE: The following are two efficient ways to load Jac:
 *                                                                
 * (1) (with macros - no explicit data structure references)      
 *    for (j=0; j < Neq; j++) {                                   
 *       col_j = BAND_COL(Jac,j);                                  
 *       for (i=j-mupper; i <= j+mlower; i++) {                   
 *         generate J_ij = the (i,j)th Jacobian element           
 *         BAND_COL_ELEM(col_j,i,j) = J_ij;                       
 *       }                                                        
 *     }                                                          
 *                                                                
 * (2) (with BAND_COL macro, but without BAND_COL_ELEM macro)     
 *    for (j=0; j < Neq; j++) {                                   
 *       col_j = BAND_COL(Jac,j);                                  
 *       for (k=-mupper; k <= mlower; k++) {                      
 *         generate J_ij = the (i,j)th Jacobian element, i=j+k    
 *         col_j[k] = J_ij;                                       
 *       }                                                        
 *     }                                                          
 *                                                                
 * A third way, using the BAND_ELEM(A,i,j) macro, is much less    
 * efficient in general.  It is only appropriate for use in small 
 * problems in which efficiency of access is NOT a major concern. 
 *                                                                
 * NOTE: If the user's Jacobian routine needs other quantities,   
 *       they are accessible as follows: hcur (the current stepsize)
 *       and ewt (the error weight vector) are accessible through   
 *       IDAGetCurrentStep and IDAGetErrWeights, respectively, but this
 *       requires including in user_data a pointer to the solver memory.
 *       The unit roundoff is available as UNIT_ROUNDOFF defined in
 *       sundials_types.h                   
 *                                                                
 * -----------------------------------------------------------------
 */

typedef int (*IDADlsBandJacFn)(long int N, long int mupper, long int mlower,
			       realtype t, realtype c_j, 
			       N_Vector y, N_Vector yp, N_Vector r,
			       DlsMat Jac, void *user_data,
			       N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
  
/*
 * =================================================================
 *            E X P O R T E D    F U N C T I O N S 
 * =================================================================
 */

/*
 * -----------------------------------------------------------------
 * Optional inputs to the IDADLS linear solver
 * -----------------------------------------------------------------
 * IDADlsSetDenseJacFn specifies the dense Jacobian approximation
 * routine to be used for a direct dense linear solver.
 *
 * IDADlsSetBandJacFn specifies the band Jacobian approximation
 * routine to be used for a direct band linear solver.
 *
 * By default, a difference quotient approximation, supplied with
 * the solver is used.
 *
 * The return value is one of:
 *    IDADLS_SUCCESS   if successful
 *    IDADLS_MEM_NULL  if the IDA memory was NULL
 *    IDADLS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int IDADlsSetDenseJacFn(void *ida_mem, IDADlsDenseJacFn jac);
SUNDIALS_EXPORT int IDADlsSetBandJacFn(void *ida_mem, IDADlsBandJacFn jac);

/*
 * -----------------------------------------------------------------
 * Optional outputs from the IDADLS linear solver
 * -----------------------------------------------------------------
 *
 * IDADlsGetWorkSpace   returns the real and integer workspace used
 *                      by the direct linear solver.
 * IDADlsGetNumJacEvals returns the number of calls made to the
 *                      Jacobian evaluation routine jac.
 * IDADlsGetNumResEvals returns the number of calls to the user
 *                      F routine due to finite difference Jacobian
 *                      evaluation.
 * IDADlsGetLastFlag    returns the last error flag set by any of
 *                      the IDADLS interface functions.
 *
 * The return value of IDADlsGet* is one of:
 *    IDADLS_SUCCESS   if successful
 *    IDADLS_MEM_NULL  if the IDA memory was NULL
 *    IDADLS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int IDADlsGetWorkSpace(void *ida_mem, long int *lenrwLS, long int *leniwLS);
SUNDIALS_EXPORT int IDADlsGetNumJacEvals(void *ida_mem, long int *njevals);
SUNDIALS_EXPORT int IDADlsGetNumResEvals(void *ida_mem, long int *nfevalsLS);
SUNDIALS_EXPORT int IDADlsGetLastFlag(void *ida_mem, long int *flag);

/*
 * -----------------------------------------------------------------
 * The following function returns the name of the constant 
 * associated with a IDADLS return flag
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT char *IDADlsGetReturnFlagName(long int flag);


#ifdef __cplusplus
}
#endif

#endif