/usr/include/ida/ida_direct.h is in libsundials-dev 2.7.0+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | /*
* -----------------------------------------------------------------
* $Revision: 4525 $
* $Date: 2015-08-12 16:28:00 -0700 (Wed, 12 Aug 2015) $
* -----------------------------------------------------------------
* Programmer: Radu Serban @ LLNL
* -----------------------------------------------------------------
* LLNS Copyright Start
* Copyright (c) 2014, Lawrence Livermore National Security
* This work was performed under the auspices of the U.S. Department
* of Energy by Lawrence Livermore National Laboratory in part under
* Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
* Produced at the Lawrence Livermore National Laboratory.
* All rights reserved.
* For details, see the LICENSE file.
* LLNS Copyright End
* -----------------------------------------------------------------
* Common header file for the direct linear solvers in IDA.
* -----------------------------------------------------------------
*/
#ifndef _IDADLS_H
#define _IDADLS_H
#include <sundials/sundials_direct.h>
#include <sundials/sundials_nvector.h>
#ifdef __cplusplus /* wrapper to enable C++ usage */
extern "C" {
#endif
/*
* =================================================================
* I D A D I R E C T C O N S T A N T S
* =================================================================
*/
/*
* -----------------------------------------------------------------
* IDADLS return values
* -----------------------------------------------------------------
*/
#define IDADLS_SUCCESS 0
#define IDADLS_MEM_NULL -1
#define IDADLS_LMEM_NULL -2
#define IDADLS_ILL_INPUT -3
#define IDADLS_MEM_FAIL -4
/* Additional last_flag values */
#define IDADLS_JACFUNC_UNRECVR -5
#define IDADLS_JACFUNC_RECVR -6
/*
* =================================================================
* F U N C T I O N T Y P E S
* =================================================================
*/
/*
* -----------------------------------------------------------------
* Types : IDADlsDenseJacFn
* -----------------------------------------------------------------
*
* A dense Jacobian approximation function djac must be of type
* IDADlsDenseJacFn.
* Its parameters are:
*
* N is the problem size, and length of all vector arguments.
*
* t is the current value of the independent variable t.
*
* y is the current value of the dependent variable vector,
* namely the predicted value of y(t).
*
* yp is the current value of the derivative vector y',
* namely the predicted value of y'(t).
*
* r is the residual vector F(tt,yy,yp).
*
* c_j is the scalar in the system Jacobian, proportional to
* the inverse of the step size h.
*
* user_data is a pointer to user Jacobian data - the same as the
* user_data parameter passed to IDASetUserData.
*
* Jac is the dense matrix (of type DlsMat) to be loaded by
* an IDADlsDenseJacFn routine with an approximation to the
* system Jacobian matrix
* J = dF/dy + c_j *dF/dy'
* at the given point (t,y,y'), where the ODE system is
* given by F(t,y,y') = 0.
* Note that Jac is NOT preset to zero!
*
* tmp1, tmp2, tmp3 are pointers to memory allocated for
* N_Vectors which can be used by an IDADlsDenseJacFn routine
* as temporary storage or work space.
*
* A IDADlsDenseJacFn should return
* 0 if successful,
* a positive int if a recoverable error occurred, or
* a negative int if a nonrecoverable error occurred.
* In the case of a recoverable error return, the integrator will
* attempt to recover by reducing the stepsize (which changes c_j).
*
* -----------------------------------------------------------------
*
* NOTE: The following are two efficient ways to load a dense Jac:
* (1) (with macros - no explicit data structure references)
* for (j=0; j < Neq; j++) {
* col_j = LAPACK_DENSE_COL(Jac,j);
* for (i=0; i < Neq; i++) {
* generate J_ij = the (i,j)th Jacobian element
* col_j[i] = J_ij;
* }
* }
* (2) (without macros - explicit data structure references)
* for (j=0; j < Neq; j++) {
* col_j = (Jac->data)[j];
* for (i=0; i < Neq; i++) {
* generate J_ij = the (i,j)th Jacobian element
* col_j[i] = J_ij;
* }
* }
* A third way, using the LAPACK_DENSE_ELEM(A,i,j) macro, is much less
* efficient in general. It is only appropriate for use in small
* problems in which efficiency of access is NOT a major concern.
*
* NOTE: If the user's Jacobian routine needs other quantities,
* they are accessible as follows: hcur (the current stepsize)
* and ewt (the error weight vector) are accessible through
* IDAGetCurrentStep and IDAGetErrWeights, respectively, but this
* requires including in user_data a pointer to the solver memory.
* The unit roundoff is available as UNIT_ROUNDOFF defined in
* sundials_types.h.
*
* -----------------------------------------------------------------
*/
typedef int (*IDADlsDenseJacFn)(long int N, realtype t, realtype c_j,
N_Vector y, N_Vector yp, N_Vector r,
DlsMat Jac, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
/*
* -----------------------------------------------------------------
* Types : IDADlsBandJacFn
* -----------------------------------------------------------------
* A banded Jacobian approximation function bjac must have the
* prototype given below. Its parameters are:
*
* Neq is the problem size, and length of all vector arguments.
*
* mupper is the upper bandwidth of the banded Jacobian matrix.
*
* mlower is the lower bandwidth of the banded Jacobian matrix.
*
* tt is the current value of the independent variable t.
*
* yy is the current value of the dependent variable vector,
* namely the predicted value of y(t).
*
* yp is the current value of the derivative vector y',
* namely the predicted value of y'(t).
*
* rr is the residual vector F(tt,yy,yp).
*
* c_j is the scalar in the system Jacobian, proportional to 1/hh.
*
* user_data is a pointer to user Jacobian data - the same as the
* user_data parameter passed to IDASetUserData.
*
* Jac is the band matrix (of type BandMat) to be loaded by
* an IDADlsBandJacFn routine with an approximation to the
* system Jacobian matrix
* J = dF/dy + c_j *dF/dy'
* at the given point (t,y,y'), where the DAE system is
* given by F(t,y,y') = 0. Jac is preset to zero, so only
* the nonzero elements need to be loaded. See note below.
*
* tmp1, tmp2, tmp3 are pointers to memory allocated for
* N_Vectors which can be used by an IDADlsBandJacFn routine
* as temporary storage or work space.
*
* An IDADlsBandJacFn function should return
* 0 if successful,
* a positive int if a recoverable error occurred, or
* a negative int if a nonrecoverable error occurred.
* In the case of a recoverable error return, the integrator will
* attempt to recover by reducing the stepsize (which changes c_j).
*
* -----------------------------------------------------------------
*
* NOTE: The following are two efficient ways to load Jac:
*
* (1) (with macros - no explicit data structure references)
* for (j=0; j < Neq; j++) {
* col_j = BAND_COL(Jac,j);
* for (i=j-mupper; i <= j+mlower; i++) {
* generate J_ij = the (i,j)th Jacobian element
* BAND_COL_ELEM(col_j,i,j) = J_ij;
* }
* }
*
* (2) (with BAND_COL macro, but without BAND_COL_ELEM macro)
* for (j=0; j < Neq; j++) {
* col_j = BAND_COL(Jac,j);
* for (k=-mupper; k <= mlower; k++) {
* generate J_ij = the (i,j)th Jacobian element, i=j+k
* col_j[k] = J_ij;
* }
* }
*
* A third way, using the BAND_ELEM(A,i,j) macro, is much less
* efficient in general. It is only appropriate for use in small
* problems in which efficiency of access is NOT a major concern.
*
* NOTE: If the user's Jacobian routine needs other quantities,
* they are accessible as follows: hcur (the current stepsize)
* and ewt (the error weight vector) are accessible through
* IDAGetCurrentStep and IDAGetErrWeights, respectively, but this
* requires including in user_data a pointer to the solver memory.
* The unit roundoff is available as UNIT_ROUNDOFF defined in
* sundials_types.h
*
* -----------------------------------------------------------------
*/
typedef int (*IDADlsBandJacFn)(long int N, long int mupper, long int mlower,
realtype t, realtype c_j,
N_Vector y, N_Vector yp, N_Vector r,
DlsMat Jac, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
/*
* =================================================================
* E X P O R T E D F U N C T I O N S
* =================================================================
*/
/*
* -----------------------------------------------------------------
* Optional inputs to the IDADLS linear solver
* -----------------------------------------------------------------
* IDADlsSetDenseJacFn specifies the dense Jacobian approximation
* routine to be used for a direct dense linear solver.
*
* IDADlsSetBandJacFn specifies the band Jacobian approximation
* routine to be used for a direct band linear solver.
*
* By default, a difference quotient approximation, supplied with
* the solver is used.
*
* The return value is one of:
* IDADLS_SUCCESS if successful
* IDADLS_MEM_NULL if the IDA memory was NULL
* IDADLS_LMEM_NULL if the linear solver memory was NULL
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDADlsSetDenseJacFn(void *ida_mem, IDADlsDenseJacFn jac);
SUNDIALS_EXPORT int IDADlsSetBandJacFn(void *ida_mem, IDADlsBandJacFn jac);
/*
* -----------------------------------------------------------------
* Optional outputs from the IDADLS linear solver
* -----------------------------------------------------------------
*
* IDADlsGetWorkSpace returns the real and integer workspace used
* by the direct linear solver.
* IDADlsGetNumJacEvals returns the number of calls made to the
* Jacobian evaluation routine jac.
* IDADlsGetNumResEvals returns the number of calls to the user
* F routine due to finite difference Jacobian
* evaluation.
* IDADlsGetLastFlag returns the last error flag set by any of
* the IDADLS interface functions.
*
* The return value of IDADlsGet* is one of:
* IDADLS_SUCCESS if successful
* IDADLS_MEM_NULL if the IDA memory was NULL
* IDADLS_LMEM_NULL if the linear solver memory was NULL
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDADlsGetWorkSpace(void *ida_mem, long int *lenrwLS, long int *leniwLS);
SUNDIALS_EXPORT int IDADlsGetNumJacEvals(void *ida_mem, long int *njevals);
SUNDIALS_EXPORT int IDADlsGetNumResEvals(void *ida_mem, long int *nfevalsLS);
SUNDIALS_EXPORT int IDADlsGetLastFlag(void *ida_mem, long int *flag);
/*
* -----------------------------------------------------------------
* The following function returns the name of the constant
* associated with a IDADLS return flag
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT char *IDADlsGetReturnFlagName(long int flag);
#ifdef __cplusplus
}
#endif
#endif
|