This file is indexed.

/usr/include/cvodes/cvodes_spils.h is in libsundials-dev 2.7.0+dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
 * -----------------------------------------------------------------
 * $Revision: 4488 $
 * $Date: 2015-04-29 16:39:48 -0700 (Wed, 29 Apr 2015) $
 * ----------------------------------------------------------------- 
 * Programmer(s): Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * LLNS Copyright Start
 * Copyright (c) 2014, Lawrence Livermore National Security
 * This work was performed under the auspices of the U.S. Department 
 * of Energy by Lawrence Livermore National Laboratory in part under 
 * Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
 * Produced at the Lawrence Livermore National Laboratory.
 * All rights reserved.
 * For details, see the LICENSE file.
 * LLNS Copyright End
 * -----------------------------------------------------------------
 * This is the common header file for the Scaled, Preconditioned
 * Iterative Linear Solvers in CVODES.
 *
 * Part I contains type definitions and functions for using the 
 * iterative linear solvers on forward problems 
 * (IVP integration and/or FSA)
 *
 * Part II contains type definitions and functions for using the 
 * iterative linear solvers on adjoint (backward) problems
 * -----------------------------------------------------------------
 */

#ifndef _CVSSPILS_H
#define _CVSSPILS_H

#include <sundials/sundials_iterative.h>
#include <sundials/sundials_nvector.h>

#ifdef __cplusplus  /* wrapper to enable C++ usage */
extern "C" {
#endif

/*
 * -----------------------------------------------------------------
 * CVSPILS return values
 * -----------------------------------------------------------------
 */

#define CVSPILS_SUCCESS          0
#define CVSPILS_MEM_NULL        -1
#define CVSPILS_LMEM_NULL       -2
#define CVSPILS_ILL_INPUT       -3
#define CVSPILS_MEM_FAIL        -4
#define CVSPILS_PMEM_NULL       -5

/* Return values for the adjoint module */

#define CVSPILS_NO_ADJ          -101
#define CVSPILS_LMEMB_NULL      -102

/*
 * -----------------------------------------------------------------
 * CVSPILS solver constants
 * -----------------------------------------------------------------
 * CVSPILS_MAXL   : default value for the maximum Krylov
 *                  dimension
 *
 * CVSPILS_MSBPRE : maximum number of steps between
 *                  preconditioner evaluations
 *
 * CVSPILS_DGMAX  : maximum change in gamma between
 *                  preconditioner evaluations
 *
 * CVSPILS_EPLIN  : default value for factor by which the
 *                  tolerance on the nonlinear iteration is
 *                  multiplied to get a tolerance on the linear
 *                  iteration
 * -----------------------------------------------------------------
 */

#define CVSPILS_MAXL   5
#define CVSPILS_MSBPRE 50
#define CVSPILS_DGMAX  RCONST(0.2)
#define CVSPILS_EPLIN  RCONST(0.05)

/* 
 * -----------------------------------------------------------------
 * PART I - forward problems
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Type : CVSpilsPrecSetupFn
 * -----------------------------------------------------------------
 * The user-supplied preconditioner setup function PrecSetup and
 * the user-supplied preconditioner solve function PrecSolve
 * together must define left and right preconditoner matrices
 * P1 and P2 (either of which may be trivial), such that the
 * product P1*P2 is an approximation to the Newton matrix
 * M = I - gamma*J.  Here J is the system Jacobian J = df/dy,
 * and gamma is a scalar proportional to the integration step
 * size h.  The solution of systems P z = r, with P = P1 or P2,
 * is to be carried out by the PrecSolve function, and PrecSetup
 * is to do any necessary setup operations.
 *
 * The user-supplied preconditioner setup function PrecSetup
 * is to evaluate and preprocess any Jacobian-related data
 * needed by the preconditioner solve function PrecSolve.
 * This might include forming a crude approximate Jacobian,
 * and performing an LU factorization on the resulting
 * approximation to M.  This function will not be called in
 * advance of every call to PrecSolve, but instead will be called
 * only as often as necessary to achieve convergence within the
 * Newton iteration.  If the PrecSolve function needs no
 * preparation, the PrecSetup function can be NULL.
 *
 * For greater efficiency, the PrecSetup function may save
 * Jacobian-related data and reuse it, rather than generating it
 * from scratch.  In this case, it should use the input flag jok
 * to decide whether to recompute the data, and set the output
 * flag *jcurPtr accordingly.
 *
 * Each call to the PrecSetup function is preceded by a call to
 * the RhsFn f with the same (t,y) arguments.  Thus the PrecSetup
 * function can use any auxiliary data that is computed and
 * saved by the f function and made accessible to PrecSetup.
 *
 * A function PrecSetup must have the prototype given below.
 * Its parameters are as follows:
 *
 * t       is the current value of the independent variable.
 *
 * y       is the current value of the dependent variable vector,
 *          namely the predicted value of y(t).
 *
 * fy      is the vector f(t,y).
 *
 * jok     is an input flag indicating whether Jacobian-related
 *         data needs to be recomputed, as follows:
 *           jok == FALSE means recompute Jacobian-related data
 *                  from scratch.
 *           jok == TRUE  means that Jacobian data, if saved from
 *                  the previous PrecSetup call, can be reused
 *                  (with the current value of gamma).
 *         A Precset call with jok == TRUE can only occur after
 *         a call with jok == FALSE.
 *
 * jcurPtr is a pointer to an output integer flag which is
 *         to be set by PrecSetup as follows:
 *         Set *jcurPtr = TRUE if Jacobian data was recomputed.
 *         Set *jcurPtr = FALSE if Jacobian data was not recomputed,
 *                        but saved data was reused.
 *
 * gamma   is the scalar appearing in the Newton matrix.
 *
 * user_data  is a pointer to user data - the same as the user_data
 *         parameter passed to the CVodeSetUserData function.
 *
 * tmp1, tmp2, and tmp3 are pointers to memory allocated
 *                      for N_Vectors which can be used by
 *                      CVSpilsPrecSetupFn as temporary storage or
 *                      work space.
 *
 * NOTE: If the user's preconditioner needs other quantities,
 *       they are accessible as follows: hcur (the current stepsize)
 *       and ewt (the error weight vector) are accessible through
 *       CVodeGetCurrentStep and CVodeGetErrWeights, respectively).
 *       The unit roundoff is available as UNIT_ROUNDOFF defined in
 *       sundials_types.h.
 *
 * Returned value:
 * The value to be returned by the PrecSetup function is a flag
 * indicating whether it was successful.  This value should be
 *   0   if successful,
 *   > 0 for a recoverable error (step will be retried),
 *   < 0 for an unrecoverable error (integration is halted).
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsPrecSetupFn)(realtype t, N_Vector y, N_Vector fy,
				  booleantype jok, booleantype *jcurPtr,
				  realtype gamma, void *user_data,
				  N_Vector tmp1, N_Vector tmp2,
				  N_Vector tmp3);

/*
 * -----------------------------------------------------------------
 * Type : CVSpilsPrecSolveFn
 * -----------------------------------------------------------------
 * The user-supplied preconditioner solve function PrecSolve
 * is to solve a linear system P z = r in which the matrix P is
 * one of the preconditioner matrices P1 or P2, depending on the
 * type of preconditioning chosen.
 *
 * A function PrecSolve must have the prototype given below.
 * Its parameters are as follows:
 *
 * t      is the current value of the independent variable.
 *
 * y      is the current value of the dependent variable vector.
 *
 * fy     is the vector f(t,y).
 *
 * r      is the right-hand side vector of the linear system.
 *
 * z      is the output vector computed by PrecSolve.
 *
 * gamma  is the scalar appearing in the Newton matrix.
 *
 * delta  is an input tolerance for use by PSolve if it uses
 *        an iterative method in its solution.  In that case,
 *        the residual vector Res = r - P z of the system
 *        should be made less than delta in weighted L2 norm,
 *        i.e., sqrt [ Sum (Res[i]*ewt[i])^2 ] < delta.
 *        Note: the error weight vector ewt can be obtained
 *        through a call to the routine CVodeGetErrWeights.
 *
 * lr     is an input flag indicating whether PrecSolve is to use
 *        the left preconditioner P1 or right preconditioner
 *        P2: lr = 1 means use P1, and lr = 2 means use P2.
 *
 * user_data is a pointer to user data - the same as the user_data
 *        parameter passed to the CVodeSetUserData function.
 *
 * tmp    is a pointer to memory allocated for an N_Vector
 *        which can be used by PSolve for work space.
 *
 * Returned value:
 * The value to be returned by the PrecSolve function is a flag
 * indicating whether it was successful.  This value should be
 *   0 if successful,
 *   positive for a recoverable error (step will be retried),
 *   negative for an unrecoverable error (integration is halted).
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsPrecSolveFn)(realtype t, N_Vector y, N_Vector fy,
				  N_Vector r, N_Vector z,
				  realtype gamma, realtype delta,
				  int lr, void *user_data, N_Vector tmp);

/*
 * -----------------------------------------------------------------
 * Type : CVSpilsJacTimesVecFn
 * -----------------------------------------------------------------
 * The user-supplied function jtimes is to generate the product
 * J*v for given v, where J is the Jacobian df/dy, or an
 * approximation to it, and v is a given vector. It should return
 * 0 if successful a positive value for a recoverable error or 
 * a negative value for an unrecoverable failure.
 *
 * A function jtimes must have the prototype given below. Its
 * parameters are as follows:
 *
 *   v        is the N_Vector to be multiplied by J.
 *
 *   Jv       is the output N_Vector containing J*v.
 *
 *   t        is the current value of the independent variable.
 *
 *   y        is the current value of the dependent variable
 *            vector.
 *
 *   fy       is the vector f(t,y).
 *
 *   user_data   is a pointer to user data, the same as the user_data
 *            parameter passed to the CVodeSetUserData function. 
 *
 *   tmp      is a pointer to memory allocated for an N_Vector
 *            which can be used by Jtimes for work space.
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsJacTimesVecFn)(N_Vector v, N_Vector Jv, realtype t,
				    N_Vector y, N_Vector fy,
				    void *user_data, N_Vector tmp);


/*
 * -----------------------------------------------------------------
 * Optional inputs to the CVSPILS linear solver
 * -----------------------------------------------------------------
 *
 * CVSpilsSetPrecType resets the type of preconditioner, pretype,
 *                from the value previously set.
 *                This must be one of PREC_NONE, PREC_LEFT, 
 *                PREC_RIGHT, or PREC_BOTH.
 *
 * CVSpilsSetGSType specifies the type of Gram-Schmidt
 *                orthogonalization to be used. This must be one of
 *                the two enumeration constants MODIFIED_GS or
 *                CLASSICAL_GS defined in iterative.h. These correspond
 *                to using modified Gram-Schmidt and classical
 *                Gram-Schmidt, respectively.
 *                Default value is MODIFIED_GS.
 *
 * CVSpilsSetMaxl resets the maximum Krylov subspace size, maxl,
 *                from the value previously set.
 *                An input value <= 0, gives the default value.
 *
 * CVSpilsSetEpsLin specifies the factor by which the tolerance on
 *                the nonlinear iteration is multiplied to get a
 *                tolerance on the linear iteration.
 *                Default value is 0.05.
 *
 * CVSpilsSetPreconditioner specifies the PrecSetup and PrecSolve functions.
 *                Default is NULL for both arguments (no preconditioning).
 *
 * CVSpilsSetJacTimesVecFn specifies the jtimes function. Default is to use 
 *                an internal finite difference approximation routine.
 *
 * The return value of CVSpilsSet* is one of:
 *    CVSPILS_SUCCESS   if successful
 *    CVSPILS_MEM_NULL  if the cvode memory was NULL
 *    CVSPILS_LMEM_NULL if the linear solver memory was NULL
 *    CVSPILS_ILL_INPUT if an input has an illegal value
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int CVSpilsSetPrecType(void *cvode_mem, int pretype);
SUNDIALS_EXPORT int CVSpilsSetGSType(void *cvode_mem, int gstype);
SUNDIALS_EXPORT int CVSpilsSetMaxl(void *cvode_mem, int maxl);
SUNDIALS_EXPORT int CVSpilsSetEpsLin(void *cvode_mem, realtype eplifac);
SUNDIALS_EXPORT int CVSpilsSetPreconditioner(void *cvode_mem,
                                             CVSpilsPrecSetupFn pset, 
					     CVSpilsPrecSolveFn psolve);
SUNDIALS_EXPORT int CVSpilsSetJacTimesVecFn(void *cvode_mem,
                                            CVSpilsJacTimesVecFn jtv);

/*
 * -----------------------------------------------------------------
 * Optional outputs from the CVSPILS linear solver
 * -----------------------------------------------------------------
 * CVSpilsGetWorkSpace returns the real and integer workspace used
 *                by the SPILS module.
 *
 * CVSpilsGetNumPrecEvals returns the number of preconditioner
 *                 evaluations, i.e. the number of calls made
 *                 to PrecSetup with jok==FALSE.
 *
 * CVSpilsGetNumPrecSolves returns the number of calls made to
 *                 PrecSolve.
 *
 * CVSpilsGetNumLinIters returns the number of linear iterations.
 *
 * CVSpilsGetNumConvFails returns the number of linear
 *                 convergence failures.
 *
 * CVSpilsGetNumJtimesEvals returns the number of calls to jtimes.
 *
 * CVSpilsGetNumRhsEvals returns the number of calls to the user
 *                 f routine due to finite difference Jacobian
 *                 times vector evaluation.
 *
 * CVSpilsGetLastFlag returns the last error flag set by any of
 *                 the CVSPILS interface functions.
 *
 * The return value of CVSpilsGet* is one of:
 *    CVSPILS_SUCCESS   if successful
 *    CVSPILS_MEM_NULL  if the cvode memory was NULL
 *    CVSPILS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int CVSpilsGetWorkSpace(void *cvode_mem, long int *lenrwLS, long int *leniwLS);
SUNDIALS_EXPORT int CVSpilsGetNumPrecEvals(void *cvode_mem, long int *npevals);
SUNDIALS_EXPORT int CVSpilsGetNumPrecSolves(void *cvode_mem, long int *npsolves);
SUNDIALS_EXPORT int CVSpilsGetNumLinIters(void *cvode_mem, long int *nliters);
SUNDIALS_EXPORT int CVSpilsGetNumConvFails(void *cvode_mem, long int *nlcfails);
SUNDIALS_EXPORT int CVSpilsGetNumJtimesEvals(void *cvode_mem, long int *njvevals);
SUNDIALS_EXPORT int CVSpilsGetNumRhsEvals(void *cvode_mem, long int *nfevalsLS); 
SUNDIALS_EXPORT int CVSpilsGetLastFlag(void *cvode_mem, long int *flag);

/*
 * -----------------------------------------------------------------
 * The following function returns the name of the constant 
 * associated with a CVSPILS return flag
 * -----------------------------------------------------------------
 */
  
SUNDIALS_EXPORT char *CVSpilsGetReturnFlagName(long int flag);


/* 
 * -----------------------------------------------------------------
 * PART II - backward problems
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Type : CVSpilsPrecSetupFnB
 * -----------------------------------------------------------------
 * A function PrecSetupB for the adjoint (backward) problem must have 
 * the prototype given below.
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsPrecSetupFnB)(realtype t, N_Vector y,
                                   N_Vector yB, N_Vector fyB,
                                   booleantype jokB,
                                   booleantype *jcurPtrB, realtype gammaB,
                                   void *user_dataB,
                                   N_Vector tmp1B, N_Vector tmp2B,
                                   N_Vector tmp3B);


/*
 * -----------------------------------------------------------------
 * Type : CVSpilsPrecSetupFnBS
 * -----------------------------------------------------------------
 * A function PrecSetupBS for the adjoint (backward) problem must have 
 * the prototype given below.
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsPrecSetupFnBS)(realtype t, N_Vector y, N_Vector *yS,
                                    N_Vector yB, N_Vector fyB,
                                    booleantype jokB,
                                    booleantype *jcurPtrB, realtype gammaB,
                                    void *user_dataB,
                                    N_Vector tmp1B, N_Vector tmp2B,
                                    N_Vector tmp3B);


/*
 * -----------------------------------------------------------------
 * Type : CVSpilsPrecSolveFnB
 * -----------------------------------------------------------------
 * A function PrecSolveB for the adjoint (backward) problem  must 
 * have the prototype given below.
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsPrecSolveFnB)(realtype t, N_Vector y,
                                   N_Vector yB, N_Vector fyB,
                                   N_Vector rB, N_Vector zB,
                                   realtype gammaB, realtype deltaB,
                                   int lrB, void *user_dataB, N_Vector tmpB);

/*
 * -----------------------------------------------------------------
 * Type : CVSpilsPrecSolveFnBS
 * -----------------------------------------------------------------
 * A function PrecSolveBS for the adjoint (backward) problem  must 
 * have the prototype given below.
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsPrecSolveFnBS)(realtype t, N_Vector y, N_Vector *yS,
                                    N_Vector yB, N_Vector fyB,
                                    N_Vector rB, N_Vector zB,
                                    realtype gammaB, realtype deltaB,
                                    int lrB, void *user_dataB, N_Vector tmpB);

/*
 * -----------------------------------------------------------------
 * Type : CVSpilsJacTimesVecFnB
 * -----------------------------------------------------------------
 * A function jtimesB for the adjoint (backward) problem must have 
 * the prototype given below.
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsJacTimesVecFnB)(N_Vector vB, N_Vector JvB, realtype t,
                                     N_Vector y, N_Vector yB, N_Vector fyB,
                                     void *jac_dataB, N_Vector tmpB);

/*
 * -----------------------------------------------------------------
 * Type : CVSpilsJacTimesVecFnBS
 * -----------------------------------------------------------------
 * A function jtimesBS for the adjoint (backward) problem must have 
 * the prototype given below.
 * -----------------------------------------------------------------
 */

typedef int (*CVSpilsJacTimesVecFnBS)(N_Vector vB, N_Vector JvB,
                                      realtype t, N_Vector y, N_Vector *yS,
                                      N_Vector yB, N_Vector fyB,
                                      void *jac_dataB, N_Vector tmpB);

/*
 * -----------------------------------------------------------------
 * Functions
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Each CVSpilsSet***B or CVSpilsSet***BS function below links the
 * main CVODES integrator with the corresponding CVSpilsSet***
 * optional input function for the backward integration.
 * The 'which' argument is the int returned by CVodeCreateB.
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int CVSpilsSetPrecTypeB(void *cvode_mem, int which, int pretypeB);
SUNDIALS_EXPORT int CVSpilsSetGSTypeB(void *cvode_mem, int which, int gstypeB);
SUNDIALS_EXPORT int CVSpilsSetEpsLinB(void *cvode_mem, int which, realtype eplifacB);
SUNDIALS_EXPORT int CVSpilsSetMaxlB(void *cvode_mem, int which, int maxlB);

SUNDIALS_EXPORT int CVSpilsSetPreconditionerB(void *cvode_mem, int which, 
                                              CVSpilsPrecSetupFnB psetB,
					      CVSpilsPrecSolveFnB psolveB);
SUNDIALS_EXPORT int CVSpilsSetPreconditionerBS(void *cvode_mem, int which, 
                                               CVSpilsPrecSetupFnBS psetBS,
					       CVSpilsPrecSolveFnBS psolveBS);

SUNDIALS_EXPORT int CVSpilsSetJacTimesVecFnB(void *cvode_mem, int which, 
                                             CVSpilsJacTimesVecFnB jtvB);
SUNDIALS_EXPORT int CVSpilsSetJacTimesVecFnBS(void *cvode_mem, int which, 
                                              CVSpilsJacTimesVecFnBS jtvBS);


#ifdef __cplusplus
}
#endif

#endif