/usr/include/cvodes/cvodes_direct.h is in libsundials-dev 2.7.0+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | /*
* -----------------------------------------------------------------
* $Revision: 4488 $
* $Date: 2015-04-29 16:39:48 -0700 (Wed, 29 Apr 2015) $
* -----------------------------------------------------------------
* Programmer: Radu Serban @ LLNL
* -----------------------------------------------------------------
* LLNS Copyright Start
* Copyright (c) 2014, Lawrence Livermore National Security
* This work was performed under the auspices of the U.S. Department
* of Energy by Lawrence Livermore National Laboratory in part under
* Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
* Produced at the Lawrence Livermore National Laboratory.
* All rights reserved.
* For details, see the LICENSE file.
* LLNS Copyright End
* -----------------------------------------------------------------
* Common header file for the direct linear solvers in CVODES.
*
* Part I contains type definitions and function prototypes for
* using a CVDLS linear solver on forward problems (IVP
* integration and/or FSA)
*
* Part II contains type definitions and function prototypes for
* using a CVDLS linear solver on adjoint (backward) problems
* -----------------------------------------------------------------
*/
#ifndef _CVSDLS_H
#define _CVSDLS_H
#include <sundials/sundials_direct.h>
#include <sundials/sundials_nvector.h>
#ifdef __cplusplus /* wrapper to enable C++ usage */
extern "C" {
#endif
/*
* =================================================================
* C V S D I R E C T C O N S T A N T S
* =================================================================
*/
/*
* -----------------------------------------------------------------
* CVSDIRECT return values
* -----------------------------------------------------------------
*/
#define CVDLS_SUCCESS 0
#define CVDLS_MEM_NULL -1
#define CVDLS_LMEM_NULL -2
#define CVDLS_ILL_INPUT -3
#define CVDLS_MEM_FAIL -4
/* Additional last_flag values */
#define CVDLS_JACFUNC_UNRECVR -5
#define CVDLS_JACFUNC_RECVR -6
/* Return values for the adjoint module */
#define CVDLS_NO_ADJ -101
#define CVDLS_LMEMB_NULL -102
/*
* =================================================================
* PART I: F O R W A R D P R O B L E M S
* =================================================================
*/
/*
* -----------------------------------------------------------------
* FUNCTION TYPES
* -----------------------------------------------------------------
*/
/*
* -----------------------------------------------------------------
* Type: CVDlsDenseJacFn
* -----------------------------------------------------------------
*
* A dense Jacobian approximation function Jac must be of type
* CVDlsDenseJacFn. Its parameters are:
*
* N is the problem size.
*
* Jac is the dense matrix (of type DlsMat) that will be loaded
* by a CVDlsDenseJacFn with an approximation to the Jacobian
* matrix J = (df_i/dy_j) at the point (t,y).
*
* t is the current value of the independent variable.
*
* y is the current value of the dependent variable vector,
* namely the predicted value of y(t).
*
* fy is the vector f(t,y).
*
* user_data is a pointer to user data - the same as the user_data
* parameter passed to CVodeSetFdata.
*
* tmp1, tmp2, and tmp3 are pointers to memory allocated for
* vectors of length N which can be used by a CVDlsDenseJacFn
* as temporary storage or work space.
*
* A CVDlsDenseJacFn should return 0 if successful, a positive
* value if a recoverable error occurred, and a negative value if
* an unrecoverable error occurred.
*
* -----------------------------------------------------------------
*
* NOTE: The following are two efficient ways to load a dense Jac:
* (1) (with macros - no explicit data structure references)
* for (j=0; j < Neq; j++) {
* col_j = DENSE_COL(Jac,j);
* for (i=0; i < Neq; i++) {
* generate J_ij = the (i,j)th Jacobian element
* col_j[i] = J_ij;
* }
* }
* (2) (without macros - explicit data structure references)
* for (j=0; j < Neq; j++) {
* col_j = (Jac->data)[j];
* for (i=0; i < Neq; i++) {
* generate J_ij = the (i,j)th Jacobian element
* col_j[i] = J_ij;
* }
* }
* A third way, using the DENSE_ELEM(A,i,j) macro, is much less
* efficient in general. It is only appropriate for use in small
* problems in which efficiency of access is NOT a major concern.
*
* NOTE: If the user's Jacobian routine needs other quantities,
* they are accessible as follows: hcur (the current stepsize)
* and ewt (the error weight vector) are accessible through
* CVodeGetCurrentStep and CVodeGetErrWeights, respectively
* (see cvode.h). The unit roundoff is available as
* UNIT_ROUNDOFF defined in sundials_types.h.
*
* -----------------------------------------------------------------
*/
typedef int (*CVDlsDenseJacFn)(long int N, realtype t,
N_Vector y, N_Vector fy,
DlsMat Jac, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
/*
* -----------------------------------------------------------------
* Type: CVDlsBandJacFn
* -----------------------------------------------------------------
*
* A band Jacobian approximation function Jac must have the
* prototype given below. Its parameters are:
*
* N is the length of all vector arguments.
*
* mupper is the upper half-bandwidth of the approximate banded
* Jacobian. This parameter is the same as the mupper parameter
* passed by the user to the linear solver initialization function.
*
* mlower is the lower half-bandwidth of the approximate banded
* Jacobian. This parameter is the same as the mlower parameter
* passed by the user to the linear solver initialization function.
*
* t is the current value of the independent variable.
*
* y is the current value of the dependent variable vector,
* namely the predicted value of y(t).
*
* fy is the vector f(t,y).
*
* Jac is the band matrix (of type DlsMat) that will be loaded
* by a CVDlsBandJacFn with an approximation to the Jacobian matrix
* Jac = (df_i/dy_j) at the point (t,y).
* Three efficient ways to load J are:
*
* (1) (with macros - no explicit data structure references)
* for (j=0; j < n; j++) {
* col_j = BAND_COL(Jac,j);
* for (i=j-mupper; i <= j+mlower; i++) {
* generate J_ij = the (i,j)th Jacobian element
* BAND_COL_ELEM(col_j,i,j) = J_ij;
* }
* }
*
* (2) (with BAND_COL macro, but without BAND_COL_ELEM macro)
* for (j=0; j < n; j++) {
* col_j = BAND_COL(Jac,j);
* for (k=-mupper; k <= mlower; k++) {
* generate J_ij = the (i,j)th Jacobian element, i=j+k
* col_j[k] = J_ij;
* }
* }
*
* (3) (without macros - explicit data structure references)
* offset = Jac->smu;
* for (j=0; j < n; j++) {
* col_j = ((Jac->data)[j])+offset;
* for (k=-mupper; k <= mlower; k++) {
* generate J_ij = the (i,j)th Jacobian element, i=j+k
* col_j[k] = J_ij;
* }
* }
* Caution: Jac->smu is generally NOT the same as mupper.
*
* The BAND_ELEM(A,i,j) macro is appropriate for use in small
* problems in which efficiency of access is NOT a major concern.
*
* user_data is a pointer to user data - the same as the user_data
* parameter passed to CVodeSetFdata.
*
* NOTE: If the user's Jacobian routine needs other quantities,
* they are accessible as follows: hcur (the current stepsize)
* and ewt (the error weight vector) are accessible through
* CVodeGetCurrentStep and CVodeGetErrWeights, respectively
* (see cvode.h). The unit roundoff is available as
* UNIT_ROUNDOFF defined in sundials_types.h
*
* tmp1, tmp2, and tmp3 are pointers to memory allocated for
* vectors of length N which can be used by a CVDlsBandJacFn
* as temporary storage or work space.
*
* A CVDlsBandJacFn should return 0 if successful, a positive value
* if a recoverable error occurred, and a negative value if an
* unrecoverable error occurred.
* -----------------------------------------------------------------
*/
typedef int (*CVDlsBandJacFn)(long int N, long int mupper, long int mlower,
realtype t, N_Vector y, N_Vector fy,
DlsMat Jac, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
/*
* -----------------------------------------------------------------
* EXPORTED FUNCTIONS
* -----------------------------------------------------------------
*/
/*
* -----------------------------------------------------------------
* Optional inputs to the CVDLS linear solver
* -----------------------------------------------------------------
*
* CVDlsSetDenseJacFn specifies the dense Jacobian approximation
* routine to be used for a direct dense linear solver.
*
* CVDlsSetBandJacFn specifies the band Jacobian approximation
* routine to be used for a direct band linear solver.
*
* By default, a difference quotient approximation, supplied with
* the solver is used.
*
* The return value is one of:
* CVDLS_SUCCESS if successful
* CVDLS_MEM_NULL if the CVODE memory was NULL
* CVDLS_LMEM_NULL if the linear solver memory was NULL
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int CVDlsSetDenseJacFn(void *cvode_mem, CVDlsDenseJacFn jac);
SUNDIALS_EXPORT int CVDlsSetBandJacFn(void *cvode_mem, CVDlsBandJacFn jac);
/*
* -----------------------------------------------------------------
* Optional outputs from the CVSDIRECT linear solver
* -----------------------------------------------------------------
*
* CVDlsGetWorkSpace returns the real and integer workspace used
* by the direct linear solver.
* CVDlsGetNumJacEvals returns the number of calls made to the
* Jacobian evaluation routine jac.
* CVDlsGetNumRhsEvals returns the number of calls to the user
* f routine due to finite difference Jacobian
* evaluation.
* CVDlsGetLastFlag returns the last error flag set by any of
* the CVSDIRECT interface functions.
*
* The return value of CVDlsGet* is one of:
* CVDLS_SUCCESS if successful
* CVDLS_MEM_NULL if the CVODES memory was NULL
* CVDLS_LMEM_NULL if the linear solver memory was NULL
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int CVDlsGetWorkSpace(void *cvode_mem, long int *lenrwLS, long int *leniwLS);
SUNDIALS_EXPORT int CVDlsGetNumJacEvals(void *cvode_mem, long int *njevals);
SUNDIALS_EXPORT int CVDlsGetNumRhsEvals(void *cvode_mem, long int *nfevalsLS);
SUNDIALS_EXPORT int CVDlsGetLastFlag(void *cvode_mem, long int *flag);
/*
* -----------------------------------------------------------------
* The following function returns the name of the constant
* associated with a CVSDIRECT return flag
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT char *CVDlsGetReturnFlagName(long int flag);
/*
* =================================================================
* PART II: B A C K W A R D P R O B L E M S
* =================================================================
*/
/*
* -----------------------------------------------------------------
* FUNCTION TYPES
* -----------------------------------------------------------------
*/
/*
* -----------------------------------------------------------------
* Type: CVDlsDenseJacFnB
* -----------------------------------------------------------------
* A dense Jacobian approximation function jacB for the adjoint
* (backward) problem must have the prototype given below.
* -----------------------------------------------------------------
*/
typedef int (*CVDlsDenseJacFnB)(long int nB, realtype t,
N_Vector y,
N_Vector yB, N_Vector fyB,
DlsMat JB, void *user_dataB,
N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);
/*
* -----------------------------------------------------------------
* Type: CVDlsDenseJacFnBS
* -----------------------------------------------------------------
* A dense Jacobian approximation function jacBS for the adjoint
* (backward) problem, sensitivity-dependent case, must have the
* prototype given below.
* -----------------------------------------------------------------
*/
typedef int (*CVDlsDenseJacFnBS)(long int nB, realtype t,
N_Vector y, N_Vector *yS,
N_Vector yB, N_Vector fyB,
DlsMat JB, void *user_dataB,
N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);
/*
* -----------------------------------------------------------------
* Type : CVDlsBandJacFnB
* -----------------------------------------------------------------
* A band Jacobian approximation function jacB for the adjoint
* (backward) problem must have the prototype given below.
* -----------------------------------------------------------------
*/
typedef int (*CVDlsBandJacFnB)(long int nB, long int mupperB, long int mlowerB,
realtype t, N_Vector y,
N_Vector yB, N_Vector fyB,
DlsMat JB, void *user_dataB,
N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);
/*
* -----------------------------------------------------------------
* Type : CVDlsBandJacFnBS
* -----------------------------------------------------------------
* A band Jacobian approximation function jacBS for the adjoint
* (backward) problem, sensitivity-dependent case, must have the
* prototype given below.
* -----------------------------------------------------------------
*/
typedef int (*CVDlsBandJacFnBS)(long int nB, long int mupperB, long int mlowerB,
realtype t, N_Vector y, N_Vector *yS,
N_Vector yB, N_Vector fyB,
DlsMat JB, void *user_dataB,
N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);
/*
* -----------------------------------------------------------------
* EXPORTED FUNCTIONS
* -----------------------------------------------------------------
*/
/*
* -----------------------------------------------------------------
* Functions: CVDlsSet*JacFnB and CVDlsSet*JacFnBS
* -----------------------------------------------------------------
* CVDlsSetDenseJacFnB and CVDlsSetBandJacFnB specify the dense and
* band Jacobian functions, respectively, to be used by a
* CVSDIRECT linear solver for the backward integration phase, when
* the backward problem does not depend on forward sensitivities.
* CVDlsSetDenseJacFnBS and CVDlsSetBandJacFnBS specify the Jacobian
* functions when the backward problem does depend on sensitivities.
* The 'which' argument is the int returned by CVodeCreateB.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int CVDlsSetDenseJacFnB(void *cvode_mem, int which,
CVDlsDenseJacFnB jacB);
SUNDIALS_EXPORT int CVDlsSetDenseJacFnBS(void *cvode_mem, int which,
CVDlsDenseJacFnBS jacBS);
SUNDIALS_EXPORT int CVDlsSetBandJacFnB(void *cvode_mem, int which,
CVDlsBandJacFnB jacB);
SUNDIALS_EXPORT int CVDlsSetBandJacFnBS(void *cvode_mem, int which,
CVDlsBandJacFnBS jacBS);
#ifdef __cplusplus
}
#endif
#endif
|