This file is indexed.

/usr/include/cvodes/cvodes_direct.h is in libsundials-dev 2.7.0+dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/*
 * -----------------------------------------------------------------
 * $Revision: 4488 $
 * $Date: 2015-04-29 16:39:48 -0700 (Wed, 29 Apr 2015) $
 * ----------------------------------------------------------------- 
 * Programmer: Radu Serban @ LLNL
 * -----------------------------------------------------------------
 * LLNS Copyright Start
 * Copyright (c) 2014, Lawrence Livermore National Security
 * This work was performed under the auspices of the U.S. Department 
 * of Energy by Lawrence Livermore National Laboratory in part under 
 * Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
 * Produced at the Lawrence Livermore National Laboratory.
 * All rights reserved.
 * For details, see the LICENSE file.
 * LLNS Copyright End
 * -----------------------------------------------------------------
 * Common header file for the direct linear solvers in CVODES.
 *
 * Part I contains type definitions and function prototypes for 
 * using a CVDLS linear solver on forward problems (IVP 
 * integration and/or FSA)
 *
 * Part II contains type definitions and function prototypes for 
 * using a CVDLS linear solver on adjoint (backward) problems
 * -----------------------------------------------------------------
 */

#ifndef _CVSDLS_H
#define _CVSDLS_H

#include <sundials/sundials_direct.h>
#include <sundials/sundials_nvector.h>

#ifdef __cplusplus  /* wrapper to enable C++ usage */
extern "C" {
#endif

/*
 * =================================================================
 * C V S D I R E C T     C O N S T A N T S
 * =================================================================
 */

/* 
 * -----------------------------------------------------------------
 * CVSDIRECT return values 
 * -----------------------------------------------------------------
 */

#define CVDLS_SUCCESS           0
#define CVDLS_MEM_NULL         -1
#define CVDLS_LMEM_NULL        -2
#define CVDLS_ILL_INPUT        -3
#define CVDLS_MEM_FAIL         -4

/* Additional last_flag values */

#define CVDLS_JACFUNC_UNRECVR  -5
#define CVDLS_JACFUNC_RECVR    -6

/* Return values for the adjoint module */

#define CVDLS_NO_ADJ           -101
#define CVDLS_LMEMB_NULL       -102

/*
 * =================================================================
 * PART I:  F O R W A R D    P R O B L E M S
 * =================================================================
 */

/*
 * -----------------------------------------------------------------
 * FUNCTION TYPES
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Type: CVDlsDenseJacFn
 * -----------------------------------------------------------------
 *
 * A dense Jacobian approximation function Jac must be of type 
 * CVDlsDenseJacFn. Its parameters are:
 *
 * N   is the problem size.
 *
 * Jac is the dense matrix (of type DlsMat) that will be loaded
 *     by a CVDlsDenseJacFn with an approximation to the Jacobian 
 *     matrix J = (df_i/dy_j) at the point (t,y). 
 *
 * t   is the current value of the independent variable.
 *
 * y   is the current value of the dependent variable vector,
 *     namely the predicted value of y(t).
 *
 * fy  is the vector f(t,y).
 *
 * user_data is a pointer to user data - the same as the user_data
 *     parameter passed to CVodeSetFdata.
 *
 * tmp1, tmp2, and tmp3 are pointers to memory allocated for
 * vectors of length N which can be used by a CVDlsDenseJacFn
 * as temporary storage or work space.
 *
 * A CVDlsDenseJacFn should return 0 if successful, a positive 
 * value if a recoverable error occurred, and a negative value if 
 * an unrecoverable error occurred.
 *
 * -----------------------------------------------------------------
 *
 * NOTE: The following are two efficient ways to load a dense Jac:         
 * (1) (with macros - no explicit data structure references)      
 *     for (j=0; j < Neq; j++) {                                  
 *       col_j = DENSE_COL(Jac,j);                                 
 *       for (i=0; i < Neq; i++) {                                
 *         generate J_ij = the (i,j)th Jacobian element           
 *         col_j[i] = J_ij;                                       
 *       }                                                        
 *     }                                                          
 * (2) (without macros - explicit data structure references)      
 *     for (j=0; j < Neq; j++) {                                  
 *       col_j = (Jac->data)[j];                                   
 *       for (i=0; i < Neq; i++) {                                
 *         generate J_ij = the (i,j)th Jacobian element           
 *         col_j[i] = J_ij;                                       
 *       }                                                        
 *     }                                                          
 * A third way, using the DENSE_ELEM(A,i,j) macro, is much less   
 * efficient in general.  It is only appropriate for use in small 
 * problems in which efficiency of access is NOT a major concern. 
 *                                                                
 * NOTE: If the user's Jacobian routine needs other quantities,   
 *     they are accessible as follows: hcur (the current stepsize)
 *     and ewt (the error weight vector) are accessible through   
 *     CVodeGetCurrentStep and CVodeGetErrWeights, respectively 
 *     (see cvode.h). The unit roundoff is available as 
 *     UNIT_ROUNDOFF defined in sundials_types.h.
 *
 * -----------------------------------------------------------------
 */
  
  
typedef int (*CVDlsDenseJacFn)(long int N, realtype t,
			       N_Vector y, N_Vector fy, 
			       DlsMat Jac, void *user_data,
			       N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
  
/*
 * -----------------------------------------------------------------
 * Type: CVDlsBandJacFn
 * -----------------------------------------------------------------
 *
 * A band Jacobian approximation function Jac must have the
 * prototype given below. Its parameters are:
 *
 * N is the length of all vector arguments.
 *
 * mupper is the upper half-bandwidth of the approximate banded
 * Jacobian. This parameter is the same as the mupper parameter
 * passed by the user to the linear solver initialization function.
 *
 * mlower is the lower half-bandwidth of the approximate banded
 * Jacobian. This parameter is the same as the mlower parameter
 * passed by the user to the linear solver initialization function.
 *
 * t is the current value of the independent variable.
 *
 * y is the current value of the dependent variable vector,
 *      namely the predicted value of y(t).
 *
 * fy is the vector f(t,y).
 *
 * Jac is the band matrix (of type DlsMat) that will be loaded
 * by a CVDlsBandJacFn with an approximation to the Jacobian matrix
 * Jac = (df_i/dy_j) at the point (t,y).
 * Three efficient ways to load J are:
 *
 * (1) (with macros - no explicit data structure references)
 *    for (j=0; j < n; j++) {
 *       col_j = BAND_COL(Jac,j);
 *       for (i=j-mupper; i <= j+mlower; i++) {
 *         generate J_ij = the (i,j)th Jacobian element
 *         BAND_COL_ELEM(col_j,i,j) = J_ij;
 *       }
 *     }
 *
 * (2) (with BAND_COL macro, but without BAND_COL_ELEM macro)
 *    for (j=0; j < n; j++) {
 *       col_j = BAND_COL(Jac,j);
 *       for (k=-mupper; k <= mlower; k++) {
 *         generate J_ij = the (i,j)th Jacobian element, i=j+k
 *         col_j[k] = J_ij;
 *       }
 *     }
 *
 * (3) (without macros - explicit data structure references)
 *     offset = Jac->smu;
 *     for (j=0; j < n; j++) {
 *       col_j = ((Jac->data)[j])+offset;
 *       for (k=-mupper; k <= mlower; k++) {
 *         generate J_ij = the (i,j)th Jacobian element, i=j+k
 *         col_j[k] = J_ij;
 *       }
 *     }
 * Caution: Jac->smu is generally NOT the same as mupper.
 *
 * The BAND_ELEM(A,i,j) macro is appropriate for use in small
 * problems in which efficiency of access is NOT a major concern.
 *
 * user_data is a pointer to user data - the same as the user_data
 *          parameter passed to CVodeSetFdata.
 *
 * NOTE: If the user's Jacobian routine needs other quantities,
 *     they are accessible as follows: hcur (the current stepsize)
 *     and ewt (the error weight vector) are accessible through
 *     CVodeGetCurrentStep and CVodeGetErrWeights, respectively
 *     (see cvode.h). The unit roundoff is available as
 *     UNIT_ROUNDOFF defined in sundials_types.h
 *
 * tmp1, tmp2, and tmp3 are pointers to memory allocated for
 * vectors of length N which can be used by a CVDlsBandJacFn
 * as temporary storage or work space.
 *
 * A CVDlsBandJacFn should return 0 if successful, a positive value
 * if a recoverable error occurred, and a negative value if an 
 * unrecoverable error occurred.
 * -----------------------------------------------------------------
 */

typedef int (*CVDlsBandJacFn)(long int N, long int mupper, long int mlower,
			      realtype t, N_Vector y, N_Vector fy, 
			      DlsMat Jac, void *user_data,
			      N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

/*
 * -----------------------------------------------------------------
 * EXPORTED FUNCTIONS 
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Optional inputs to the CVDLS linear solver
 * -----------------------------------------------------------------
 *
 * CVDlsSetDenseJacFn specifies the dense Jacobian approximation
 * routine to be used for a direct dense linear solver.
 *
 * CVDlsSetBandJacFn specifies the band Jacobian approximation
 * routine to be used for a direct band linear solver.
 *
 * By default, a difference quotient approximation, supplied with
 * the solver is used.
 *
 * The return value is one of:
 *    CVDLS_SUCCESS   if successful
 *    CVDLS_MEM_NULL  if the CVODE memory was NULL
 *    CVDLS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int CVDlsSetDenseJacFn(void *cvode_mem, CVDlsDenseJacFn jac);
SUNDIALS_EXPORT int CVDlsSetBandJacFn(void *cvode_mem, CVDlsBandJacFn jac);

/*
 * -----------------------------------------------------------------
 * Optional outputs from the CVSDIRECT linear solver
 * -----------------------------------------------------------------
 *
 * CVDlsGetWorkSpace   returns the real and integer workspace used
 *                     by the direct linear solver.
 * CVDlsGetNumJacEvals returns the number of calls made to the
 *                     Jacobian evaluation routine jac.
 * CVDlsGetNumRhsEvals returns the number of calls to the user
 *                     f routine due to finite difference Jacobian
 *                     evaluation.
 * CVDlsGetLastFlag    returns the last error flag set by any of
 *                     the CVSDIRECT interface functions.
 *
 * The return value of CVDlsGet* is one of:
 *    CVDLS_SUCCESS   if successful
 *    CVDLS_MEM_NULL  if the CVODES memory was NULL
 *    CVDLS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int CVDlsGetWorkSpace(void *cvode_mem, long int *lenrwLS, long int *leniwLS);
SUNDIALS_EXPORT int CVDlsGetNumJacEvals(void *cvode_mem, long int *njevals);
SUNDIALS_EXPORT int CVDlsGetNumRhsEvals(void *cvode_mem, long int *nfevalsLS);
SUNDIALS_EXPORT int CVDlsGetLastFlag(void *cvode_mem, long int *flag);

/*
 * -----------------------------------------------------------------
 * The following function returns the name of the constant 
 * associated with a CVSDIRECT return flag
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT char *CVDlsGetReturnFlagName(long int flag);

/*
 * =================================================================
 * PART II:  B A C K W A R D    P R O B L E M S
 * =================================================================
 */

/*
 * -----------------------------------------------------------------
 * FUNCTION TYPES
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Type: CVDlsDenseJacFnB
 * -----------------------------------------------------------------
 * A dense Jacobian approximation function jacB for the adjoint
 * (backward) problem must have the prototype given below. 
 * -----------------------------------------------------------------
 */

typedef int (*CVDlsDenseJacFnB)(long int nB, realtype t,
				N_Vector y, 
				N_Vector yB, N_Vector fyB,
				DlsMat JB, void *user_dataB, 
				N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);

/*
 * -----------------------------------------------------------------
 * Type: CVDlsDenseJacFnBS
 * -----------------------------------------------------------------
 * A dense Jacobian approximation function jacBS for the adjoint
 * (backward) problem, sensitivity-dependent case,  must have the
 *  prototype given below. 
 * -----------------------------------------------------------------
 */

typedef int (*CVDlsDenseJacFnBS)(long int nB, realtype t,
				N_Vector y, N_Vector *yS,
				N_Vector yB, N_Vector fyB,
				DlsMat JB, void *user_dataB, 
				N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);

/*
 * -----------------------------------------------------------------
 * Type : CVDlsBandJacFnB
 * -----------------------------------------------------------------
 * A band Jacobian approximation function jacB for the adjoint 
 * (backward) problem must have the prototype given below. 
 * -----------------------------------------------------------------
 */

typedef int (*CVDlsBandJacFnB)(long int nB, long int mupperB, long int mlowerB,
			       realtype t, N_Vector y,
			       N_Vector yB, N_Vector fyB,
			       DlsMat JB, void *user_dataB, 
			       N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);

/*
 * -----------------------------------------------------------------
 * Type : CVDlsBandJacFnBS
 * -----------------------------------------------------------------
 * A band Jacobian approximation function jacBS for the adjoint 
 * (backward) problem, sensitivity-dependent case, must have the
 * prototype given below.
 * -----------------------------------------------------------------
 */

typedef int (*CVDlsBandJacFnBS)(long int nB, long int mupperB, long int mlowerB,
			       realtype t, N_Vector y, N_Vector *yS,
			       N_Vector yB, N_Vector fyB,
			       DlsMat JB, void *user_dataB,
			       N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B);

/*
 * -----------------------------------------------------------------
 * EXPORTED FUNCTIONS 
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Functions: CVDlsSet*JacFnB and CVDlsSet*JacFnBS
 * -----------------------------------------------------------------
 * CVDlsSetDenseJacFnB and CVDlsSetBandJacFnB specify the dense and
 * band Jacobian functions, respectively, to be used by a
 * CVSDIRECT linear solver for the backward integration phase, when
 * the backward problem does not depend on forward sensitivities.
 * CVDlsSetDenseJacFnBS and CVDlsSetBandJacFnBS specify the Jacobian
 * functions when the backward problem does depend on sensitivities.
 * The 'which' argument is the int returned by CVodeCreateB.
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int CVDlsSetDenseJacFnB(void *cvode_mem, int which,
                                        CVDlsDenseJacFnB jacB);

SUNDIALS_EXPORT int CVDlsSetDenseJacFnBS(void *cvode_mem, int which,
                                         CVDlsDenseJacFnBS jacBS);

SUNDIALS_EXPORT int CVDlsSetBandJacFnB(void *cvode_mem, int which,
                                       CVDlsBandJacFnB jacB);

SUNDIALS_EXPORT int CVDlsSetBandJacFnBS(void *cvode_mem, int which,
                                        CVDlsBandJacFnBS jacBS);

#ifdef __cplusplus
}
#endif

#endif