This file is indexed.

/usr/include/cvode/cvode_sparse.h is in libsundials-dev 2.7.0+dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
 * -----------------------------------------------------------------
 * $Revision: 4075 $
 * $Date: 2014-04-24 10:46:58 -0700 (Thu, 24 Apr 2014) $
 * ----------------------------------------------------------------- 
 * Programmer(s): Carol S. Woodward @ LLNL
 * -----------------------------------------------------------------
 * LLNS Copyright Start
 * Copyright (c) 2014, Lawrence Livermore National Security
 * This work was performed under the auspices of the U.S. Department 
 * of Energy by Lawrence Livermore National Laboratory in part under 
 * Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
 * Produced at the Lawrence Livermore National Laboratory.
 * All rights reserved.
 * For details, see the LICENSE file.
 * LLNS Copyright End
 * -----------------------------------------------------------------
 * This is the header file for the Sparse linear solver module in IDA.
 * -----------------------------------------------------------------
 */

#ifndef _CVSPARSE_H
#define _CVSPARSE_H

#include <sundials/sundials_sparse.h>
#include <sundials/sundials_nvector.h>

#ifdef __cplusplus  /* wrapper to enable C++ usage */
extern "C" {
#endif

/*
 * =================================================================
 * C V S P A R S E    C O N S T A N T S
 * =================================================================
 */

/* 
 * -----------------------------------------------------------------
 * CVSLS return values 
 * -----------------------------------------------------------------
 */

#define CVSLS_SUCCESS           0
#define CVSLS_MEM_NULL         -1
#define CVSLS_LMEM_NULL        -2
#define CVSLS_ILL_INPUT        -3
#define CVSLS_MEM_FAIL         -4
#define CVSLS_JAC_NOSET        -5
#define CVSLS_PACKAGE_FAIL     -6

/* Additional last_flag values */

#define CVSLS_JACFUNC_UNRECVR  -7
#define CVSLS_JACFUNC_RECVR    -8

/* Return values for the adjoint module */
#define CVSLS_NO_ADJ           -101
#define CVSLS_LMEMB_NULL       -102

/*
 * -----------------------------------------------------------------
 * FUNCTION TYPES
 * -----------------------------------------------------------------
 */

/*
 * -----------------------------------------------------------------
 * Types : CVSlsSparseJacFn
 * -----------------------------------------------------------------
 *
 * A sparse Jacobian approximation function jac must be of type 
 * CVSlsSparseJacFn.
 * Its parameters are:                     
 *                                                                
 * t   is the current value of the independent variable t.        
 *                                                                
 * y   is the current value of the dependent variable vector,     
 *     namely the predicted value of y(t).                     
 *                                                                
 * fy  is the vector f(t,y).
 *     namely the predicted value of y'(t).                    
 *                                                                
 * JacMat is the compressed sparse column matrix (of type SlsMat)
 *     to be loaded by an CVSlsSparseJacFn routine with an approximation
 *     to the system Jacobian matrix
 *            J = J = (df_i/dy_j) at the point (t,y). 
 *     Note that JacMat is NOT preset to zero!
 *     Matrix data is for the nonzero entries of the Jacobian stored in
 *     compressed column format.  Row indices of entries in 
 *     column j are stored in J->rowvals[colptrs[j]] 
 *     through J->rowvals[colptrs[j+i]-1]
 *     and corresponding numerical values of the Jacobian are stored 
 *     in the same entries of J->data.
 * 
 * J_data is a pointer to user Jacobian data - the same as the    
 *     user_data parameter passed to CVodeSetFdata.                     
 *                                                                
 * tmp1, tmp2, tmp3 are pointers to memory allocated for          
 *     N_Vectors which can be used by an CVSparseJacFn routine 
 *     as temporary storage or work space.                     
 *                                                                
 * A CVSlsSparseJacFn should return                                
 *     0 if successful,                                           
 *     a positive int if a recoverable error occurred, or         
 *     a negative int if a nonrecoverable error occurred.         
 *
 * -----------------------------------------------------------------
 *
  * NOTE: If the user's Jacobian routine needs other quantities,   
 *     they are accessible as follows: hcur (the current stepsize)
 *     and ewt (the error weight vector) are accessible through   
 *     CVodeGetCurrentStep and CVodeGetErrWeights, respectively 
 *     (see cvode.h). The unit roundoff is available as 
 *     UNIT_ROUNDOFF defined in sundials_types.h.
 *
 * -----------------------------------------------------------------
 */
  
  
typedef int (*CVSlsSparseJacFn)(realtype t,
		     N_Vector y, N_Vector fy, 
		     SlsMat JacMat, void *user_data,
		     N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

/*
 * =================================================================
 *            E X P O R T E D    F U N C T I O N S 
 * =================================================================
 */

/*
 * -----------------------------------------------------------------
 * Optional inputs to the CVSPARSE linear solver
 * -----------------------------------------------------------------
 * CVSlsSetSparseJacFn specifies the Jacobian approximation
 * routine to be used for a sparse direct linear solver.
 *
 * The return value is one of:
 *    CVSLS_SUCCESS   if successful
 *    CVSLS_MEM_NULL  if the CVODE memory was NULL
 *    CVSLS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int CVSlsSetSparseJacFn(void *cvode_mem, CVSlsSparseJacFn jac);

/*
 * -----------------------------------------------------------------
 * Optional outputs from the CVSLS linear solver
 * -----------------------------------------------------------------
 *
 * CVSlsGetNumJacEvals returns the number of calls made to the
 *                      Jacobian evaluation routine jac.
 * CVSlsGetLastFlag    returns the last error flag set by any of
 *                      the IDADLS interface functions.
 *
 * The return value of IDADlsGet* is one of:
 *    CVSLS_SUCCESS   if successful
 *    CVSLS_MEM_NULL  if the IDA memory was NULL
 *    CVSLS_LMEM_NULL if the linear solver memory was NULL
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT int CVSlsGetNumJacEvals(void *ida_mem, long int *njevals);
SUNDIALS_EXPORT int CVSlsGetLastFlag(void *ida_mem, long int *flag);

/*
 * -----------------------------------------------------------------
 * The following function returns the name of the constant 
 * associated with a CVSLS return flag
 * -----------------------------------------------------------------
 */

SUNDIALS_EXPORT char *CVSlsGetReturnFlagName(long int flag);


#ifdef __cplusplus
}
#endif

#endif