/usr/include/arkode/arkode_spils.h is in libsundials-dev 2.7.0+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | /*---------------------------------------------------------------
* Programmer(s): Daniel R. Reynolds @ SMU
*---------------------------------------------------------------
* LLNS/SMU Copyright Start
* Copyright (c) 2015, Southern Methodist University and
* Lawrence Livermore National Security
*
* This work was performed under the auspices of the U.S. Department
* of Energy by Southern Methodist University and Lawrence Livermore
* National Laboratory under Contract DE-AC52-07NA27344.
* Produced at Southern Methodist University and the Lawrence
* Livermore National Laboratory.
*
* All rights reserved.
* For details, see the LICENSE file.
* LLNS/SMU Copyright End
*---------------------------------------------------------------
* This is the common header file for the Scaled, Preconditioned
* Iterative Linear Solvers in ARKODE.
*--------------------------------------------------------------*/
#ifndef _ARKSPILS_H
#define _ARKSPILS_H
#include <sundials/sundials_iterative.h>
#include <sundials/sundials_nvector.h>
#ifdef __cplusplus /* wrapper to enable C++ usage */
extern "C" {
#endif
/*---------------------------------------------------------------
ARKSPILS return values
---------------------------------------------------------------*/
#define ARKSPILS_SUCCESS 0
#define ARKSPILS_MEM_NULL -1
#define ARKSPILS_LMEM_NULL -2
#define ARKSPILS_ILL_INPUT -3
#define ARKSPILS_MEM_FAIL -4
#define ARKSPILS_PMEM_NULL -5
#define ARKSPILS_MASSMEM_NULL -6
/*---------------------------------------------------------------
ARKSPILS solver constants:
ARKSPILS_MAXL : default value for the maximum Krylov
dimension
ARKSPILS_MSBPRE : maximum number of steps between
preconditioner evaluations
ARKSPILS_DGMAX : maximum change in gamma between
preconditioner evaluations
ARKSPILS_EPLIN : default value for factor by which the
tolerance on the nonlinear iteration is
multiplied to get a tolerance on the linear
iteration
---------------------------------------------------------------*/
#define ARKSPILS_MAXL 5
#define ARKSPILS_MSBPRE 50
#define ARKSPILS_DGMAX RCONST(0.2)
#define ARKSPILS_EPLIN RCONST(0.05)
/*---------------------------------------------------------------
Type: ARKSpilsPrecSetupFn
The user-supplied preconditioner setup function PrecSetup and
the user-supplied preconditioner solve function PrecSolve
together must define left and right preconditoner matrices
P1 and P2 (either of which may be trivial), such that the
product P1*P2 is an approximation to the Newton matrix
M = I - gamma*J. Here J is the system Jacobian J = df/dy,
and gamma is a scalar proportional to the integration step
size h. The solution of systems P z = r, with P = P1 or P2,
is to be carried out by the PrecSolve function, and PrecSetup
is to do any necessary setup operations.
The user-supplied preconditioner setup function PrecSetup
is to evaluate and preprocess any Jacobian-related data
needed by the preconditioner solve function PrecSolve.
This might include forming a crude approximate Jacobian,
and performing an LU factorization on the resulting
approximation to M. This function will not be called in
advance of every call to PrecSolve, but instead will be called
only as often as necessary to achieve convergence within the
Newton iteration. If the PrecSolve function needs no
preparation, the PrecSetup function can be NULL.
For greater efficiency, the PrecSetup function may save
Jacobian-related data and reuse it, rather than generating it
from scratch. In this case, it should use the input flag jok
to decide whether to recompute the data, and set the output
flag *jcurPtr accordingly.
Each call to the PrecSetup function is preceded by a call to
the RhsFn f with the same (t,y) arguments. Thus the PrecSetup
function can use any auxiliary data that is computed and
saved by the f function and made accessible to PrecSetup.
A function PrecSetup must have the prototype given below.
Its parameters are as follows:
t is the current value of the independent variable.
y is the current value of the dependent variable vector,
namely the predicted value of y(t).
fy is the vector f(t,y).
jok is an input flag indicating whether Jacobian-related
data needs to be recomputed, as follows:
jok == FALSE means recompute Jacobian-related data
from scratch.
jok == TRUE means that Jacobian data, if saved from
the previous PrecSetup call, can be reused
(with the current value of gamma).
A Precset call with jok == TRUE can only occur after
a call with jok == FALSE.
jcurPtr is a pointer to an output integer flag which is
to be set by PrecSetup as follows:
Set *jcurPtr = TRUE if Jacobian data was recomputed.
Set *jcurPtr = FALSE if Jacobian data was not recomputed,
but saved data was reused.
gamma is the scalar appearing in the Newton matrix.
user_data is a pointer to user data - the same as the user_data
parameter passed to the ARKodeSetUserData function.
tmp1, tmp2, and tmp3 are pointers to memory allocated
for N_Vectors which can be used by
ARKSpilsPrecSetupFn as temporary storage or
work space.
NOTE: If the user's preconditioner needs other quantities,
they are accessible as follows: hcur (the current stepsize)
and ewt (the error weight vector) are accessible through
ARKodeGetCurrentStep and ARKodeGetErrWeights, respectively).
The unit roundoff is available as UNIT_ROUNDOFF defined in
sundials_types.h.
Returned value:
The value to be returned by the PrecSetup function is a flag
indicating whether it was successful. This value should be
0 if successful,
> 0 for a recoverable error (step will be retried),
< 0 for an unrecoverable error (integration is halted).
---------------------------------------------------------------*/
typedef int (*ARKSpilsPrecSetupFn)(realtype t, N_Vector y,
N_Vector fy, booleantype jok,
booleantype *jcurPtr,
realtype gamma, void *user_data,
N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3);
/*---------------------------------------------------------------
Type: ARKSpilsPrecSolveFn
The user-supplied preconditioner solve function PrecSolve
is to solve a linear system P z = r in which the matrix P is
one of the preconditioner matrices P1 or P2, depending on the
type of preconditioning chosen.
A function PrecSolve must have the prototype given below.
Its parameters are as follows:
t is the current value of the independent variable.
y is the current value of the dependent variable vector.
fy is the vector f(t,y).
r is the right-hand side vector of the linear system.
z is the output vector computed by PrecSolve.
gamma is the scalar appearing in the Newton matrix.
delta is an input tolerance for use by PSolve if it uses
an iterative method in its solution. In that case,
the residual vector Res = r - P z of the system
should be made less than delta in weighted L2 norm,
i.e., sqrt [ Sum (Res[i]*ewt[i])^2 ] < delta.
Note: the error weight vector ewt can be obtained
through a call to the routine ARKodeGetErrWeights.
lr is an input flag indicating whether PrecSolve is to use
the left preconditioner P1 or right preconditioner
P2: lr = 1 means use P1, and lr = 2 means use P2.
user_data is a pointer to user data - the same as the user_data
parameter passed to the ARKodeSetUserData function.
tmp is a pointer to memory allocated for an N_Vector
which can be used by PSolve for work space.
Returned value:
The value to be returned by the PrecSolve function is a flag
indicating whether it was successful. This value should be
0 if successful,
positive for a recoverable error (step will be retried),
negative for an unrecoverable error (integration is halted).
---------------------------------------------------------------*/
typedef int (*ARKSpilsPrecSolveFn)(realtype t, N_Vector y,
N_Vector fy, N_Vector r,
N_Vector z, realtype gamma,
realtype delta, int lr,
void *user_data, N_Vector tmp);
/*---------------------------------------------------------------
Type: ARKSpilsJacTimesVecFn
The user-supplied function jtimes is to generate the product
J*v for given v, where J is the Jacobian df/dy, or an
approximation to it, and v is a given vector. It should return
0 if successful a positive value for a recoverable error or
a negative value for an unrecoverable failure.
A function jtimes must have the prototype given below. Its
parameters are as follows:
v is the N_Vector to be multiplied by J.
Jv is the output N_Vector containing J*v.
t is the current value of the independent variable.
y is the current value of the dependent variable
vector.
fy is the vector f(t,y).
user_data is a pointer to user data, the same as the user_data
parameter passed to the ARKodeSetUserData function.
tmp is a pointer to memory allocated for an N_Vector
which can be used by Jtimes for work space.
---------------------------------------------------------------*/
typedef int (*ARKSpilsJacTimesVecFn)(N_Vector v, N_Vector Jv,
realtype t, N_Vector y,
N_Vector fy, void *user_data,
N_Vector tmp);
/*---------------------------------------------------------------
Type: ARKSpilsMassTimesVecFn
The user-supplied function mtimes is to generate the product
M*v for given v, where M is the mass matrix, or an
approximation to it, and v is a given vector. It should return
0 if successful or a negative value for an unrecoverable failure.
A function mtimes must have the prototype given below. Its
parameters are as follows:
v is the N_Vector to be multiplied by M.
Mv is the output N_Vector containing M*v.
t is the current value of the independent variable.
user_data is a pointer to user data, the same as the user_data
parameter passed to the ARKodeSetUserData function.
---------------------------------------------------------------*/
typedef int (*ARKSpilsMassTimesVecFn)(N_Vector v, N_Vector Mv,
realtype t, void *user_data);
/*---------------------------------------------------------------
Type: ARKSpilsMassPrecSetupFn
The user-supplied mass matrix preconditioner setup function
MPrecSetup and the user-supplied mass matrix preconditioner solve
function PrecSolve together must define left and right
preconditoner matrices P1 and P2 (either of which may be
trivial), such that the product P1*P2 is an approximation to
the mass matrix M. The solution of systems P z = r, with P = P1
or P2, is to be carried out by the PrecSolve function, and
MPrecSetup is to do any necessary setup operations.
The user-supplied preconditioner setup function MPrecSetup
is to evaluate and preprocess any mass-matrix-related data
needed by the preconditioner solve function PrecSolve.
A function MPrecSetup must have the prototype given below.
Its parameters are as follows:
t is the current value of the independent variable.
user_data is a pointer to user data - the same as the user_data
parameter passed to the ARKodeSetUserData function.
tmp1, tmp2, and tmp3 are pointers to memory allocated
for N_Vectors which can be used by
ARKSpilsMassPrecSetupFn as temporary
storage or work space.
Returned value:
The value to be returned by the MPrecSetup function is a flag
indicating whether it was successful. This value should be
0 if successful,
< 0 for an unrecoverable error (integration is halted).
---------------------------------------------------------------*/
typedef int (*ARKSpilsMassPrecSetupFn)(realtype t, void *user_data,
N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3);
/*---------------------------------------------------------------
Type: ARKSpilsMassPrecSolveFn
The user-supplied mass matrix preconditioner solve function
MPrecSolve is to solve a linear system P z = r in which the
matrix P is one of the preconditioner matrices P1 or P2,
depending on the type of preconditioning chosen.
A function MPrecSolve must have the prototype given below.
Its parameters are as follows:
t is the current value of the independent variable.
r is the right-hand side vector of the linear system.
z is the output vector computed by MPrecSolve.
delta is an input tolerance for use by PSolve if it uses
an iterative method in its solution. In that case,
the residual vector Res = r - P z of the system
should be made less than delta in weighted L2 norm,
i.e., sqrt [ Sum (Res[i]*ewt[i])^2 ] < delta.
Note: the error weight vector ewt can be obtained
through a call to the routine ARKodeGetErrWeights.
lr is an input flag indicating whether MPrecSolve is to use
the left preconditioner P1 or right preconditioner
P2: lr = 1 means use P1, and lr = 2 means use P2.
user_data is a pointer to user data - the same as the user_data
parameter passed to the ARKodeSetUserData function.
tmp is a pointer to memory allocated for an N_Vector
which can be used by PSolve for work space.
Returned value:
The value to be returned by the MPrecSolve function is a flag
indicating whether it was successful. This value should be
0 if successful,
negative for an unrecoverable error (integration is halted).
---------------------------------------------------------------*/
typedef int (*ARKSpilsMassPrecSolveFn)(realtype t, N_Vector r,
N_Vector z, realtype delta,
int lr, void *user_data,
N_Vector tmp);
/*---------------------------------------------------------------
Optional inputs to the ARKSPILS linear solver:
ARKSpilsSetPrecType resets the type of preconditioner, pretype,
from the value previously set.
This must be one of PREC_NONE, PREC_LEFT,
PREC_RIGHT, or PREC_BOTH.
ARKSpilsSetGSType specifies the type of Gram-Schmidt
orthogonalization to be used. This must be one of
the two enumeration constants MODIFIED_GS or
CLASSICAL_GS defined in iterative.h. These
correspond to using modified Gram-Schmidt and
classical Gram-Schmidt, respectively.
Default value is MODIFIED_GS.
ARKSpilsSetMaxl resets the maximum Krylov subspace size, maxl,
from the value previously set.
An input value <= 0, gives the default value.
ARKSpilsSetEpsLin specifies the factor by which the tolerance on
the nonlinear iteration is multiplied to get a
tolerance on the linear iteration.
Default value is 0.05.
ARKSpilsSetPreconditioner specifies the PrecSetup and PrecSolve
functions. Default is NULL for both arguments
(no preconditioning)
ARKSpilsSetMassPreconditioner specifies the mass matrix MPrecSetup
and MPrecSolve functions. Default is NULL for
both arguments (no preconditioning)
ARKSpilsSetJacTimesVecFn specifies the jtimes function. Default
is to use an internal finite difference
approximation routine.
ARKSpilsSetMassTimesVecFn specifies the mtimes function. No Default.
The return value of ARKSpilsSet* is one of:
ARKSPILS_SUCCESS if successful
ARKSPILS_MEM_NULL if the arkode memory was NULL
ARKSPILS_LMEM_NULL if the linear solver memory was NULL
ARKSPILS_MASSMEM_NULL if the mass matrix solver memory was NULL
ARKSPILS_ILL_INPUT if an input has an illegal value
---------------------------------------------------------------*/
SUNDIALS_EXPORT int ARKSpilsSetPrecType(void *arkode_mem, int pretype);
SUNDIALS_EXPORT int ARKSpilsSetMassPrecType(void *arkode_mem, int pretype);
SUNDIALS_EXPORT int ARKSpilsSetGSType(void *arkode_mem, int gstype);
SUNDIALS_EXPORT int ARKSpilsSetMassGSType(void *arkode_mem, int gstype);
SUNDIALS_EXPORT int ARKSpilsSetMaxl(void *arkode_mem, int maxl);
SUNDIALS_EXPORT int ARKSpilsSetMassMaxl(void *arkode_mem, int maxl);
SUNDIALS_EXPORT int ARKSpilsSetEpsLin(void *arkode_mem, realtype eplifac);
SUNDIALS_EXPORT int ARKSpilsSetMassEpsLin(void *arkode_mem, realtype eplifac);
SUNDIALS_EXPORT int ARKSpilsSetPreconditioner(void *arkode_mem,
ARKSpilsPrecSetupFn pset,
ARKSpilsPrecSolveFn psolve);
SUNDIALS_EXPORT int ARKSpilsSetMassPreconditioner(void *arkode_mem,
ARKSpilsMassPrecSetupFn pset,
ARKSpilsMassPrecSolveFn psolve);
SUNDIALS_EXPORT int ARKSpilsSetJacTimesVecFn(void *arkode_mem,
ARKSpilsJacTimesVecFn jtv);
SUNDIALS_EXPORT int ARKSpilsSetMassTimesVecFn(void *arkode_mem,
ARKSpilsMassTimesVecFn mtv,
void *mtimes_data);
/*---------------------------------------------------------------
Optional outputs from the ARKSPILS linear solver:
ARKSpilsGetWorkSpace returns the real and integer workspace used
by the SPILS module.
ARKSpilsGetMassWorkSpace returns the real and integer workspace used
by the mass matrix SPILS module.
ARKSpilsGetNumPrecEvals returns the number of preconditioner
evaluations, i.e. the number of calls made
to PrecSetup with jok==FALSE.
ARKSpilsGetNumMassPrecEvals returns the number of mass matrix
preconditioner evaluations, i.e. the number of
calls made to MPrecSetup.
ARKSpilsGetNumPrecSolves returns the number of calls made to
PrecSolve.
ARKSpilsGetNumMassPrecSolves returns the number of calls made to
MPrecSolve.
ARKSpilsGetNumLinIters returns the number of linear iterations.
ARKSpilsGetNumMassIters returns the number of mass matrix solver
iterations.
ARKSpilsGetNumConvFails returns the number of linear
convergence failures.
ARKSpilsGetNumMassConvFails returns the number of mass matrix solver
convergence failures.
ARKSpilsGetNumJtimesEvals returns the number of calls to jtimes.
ARKSpilsGetNumMtimesEvals returns the number of calls to mtimes.
ARKSpilsGetNumRhsEvals returns the number of calls to the user
f routine due to finite difference Jacobian
times vector evaluation.
ARKSpilsGetLastFlag returns the last error flag set by any of
the ARKSPILS interface functions.
ARKSpilsGetLastMassFlag returns the last error flag set by any of
the ARKSPILS interface functions on the mass
matrix solve.
The return value of ARKSpilsGet* is one of:
ARKSPILS_SUCCESS if successful
ARKSPILS_MEM_NULL if the arkode memory was NULL
ARKSPILS_LMEM_NULL if the linear solver memory was NULL
---------------------------------------------------------------*/
SUNDIALS_EXPORT int ARKSpilsGetWorkSpace(void *arkode_mem,
long int *lenrwLS,
long int *leniwLS);
SUNDIALS_EXPORT int ARKSpilsGetMassWorkSpace(void *arkode_mem,
long int *lenrwMLS,
long int *leniwMLS);
SUNDIALS_EXPORT int ARKSpilsGetNumPrecEvals(void *arkode_mem,
long int *npevals);
SUNDIALS_EXPORT int ARKSpilsGetNumMassPrecEvals(void *arkode_mem,
long int *nmpevals);
SUNDIALS_EXPORT int ARKSpilsGetNumPrecSolves(void *arkode_mem,
long int *npsolves);
SUNDIALS_EXPORT int ARKSpilsGetNumMassPrecSolves(void *arkode_mem,
long int *nmpsolves);
SUNDIALS_EXPORT int ARKSpilsGetNumLinIters(void *arkode_mem,
long int *nliters);
SUNDIALS_EXPORT int ARKSpilsGetNumMassIters(void *arkode_mem,
long int *nmiters);
SUNDIALS_EXPORT int ARKSpilsGetNumConvFails(void *arkode_mem,
long int *nlcfails);
SUNDIALS_EXPORT int ARKSpilsGetNumMassConvFails(void *arkode_mem,
long int *nmcfails);
SUNDIALS_EXPORT int ARKSpilsGetNumJtimesEvals(void *arkode_mem,
long int *njvevals);
SUNDIALS_EXPORT int ARKSpilsGetNumMtimesEvals(void *arkode_mem,
long int *nmvevals);
SUNDIALS_EXPORT int ARKSpilsGetNumRhsEvals(void *arkode_mem,
long int *nfevalsLS);
SUNDIALS_EXPORT int ARKSpilsGetLastFlag(void *arkode_mem,
long int *flag);
SUNDIALS_EXPORT int ARKSpilsGetLastMassFlag(void *arkode_mem,
long int *flag);
/*---------------------------------------------------------------
The following function returns the name of the constant
associated with a ARKSPILS return flag
---------------------------------------------------------------*/
SUNDIALS_EXPORT char *ARKSpilsGetReturnFlagName(long int flag);
#ifdef __cplusplus
}
#endif
#endif
|