/usr/include/arkode/arkode_direct.h is in libsundials-dev 2.7.0+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | /*---------------------------------------------------------------
* Programmer(s): Daniel R. Reynolds @ SMU
*---------------------------------------------------------------
* LLNS/SMU Copyright Start
* Copyright (c) 2015, Southern Methodist University and
* Lawrence Livermore National Security
*
* This work was performed under the auspices of the U.S. Department
* of Energy by Southern Methodist University and Lawrence Livermore
* National Laboratory under Contract DE-AC52-07NA27344.
* Produced at Southern Methodist University and the Lawrence
* Livermore National Laboratory.
*
* All rights reserved.
* For details, see the LICENSE file.
* LLNS/SMU Copyright End
*---------------------------------------------------------------
* Common header file for the direct linear solvers in ARKODE.
*--------------------------------------------------------------*/
#ifndef _ARKDLS_H
#define _ARKDLS_H
#include <sundials/sundials_direct.h>
#include <sundials/sundials_nvector.h>
#ifdef __cplusplus /* wrapper to enable C++ usage */
extern "C" {
#endif
/*===============================================================
ARKDIRECT CONSTANTS
===============================================================*/
/* ARKDLS return values */
#define ARKDLS_SUCCESS 0
#define ARKDLS_MEM_NULL -1
#define ARKDLS_LMEM_NULL -2
#define ARKDLS_ILL_INPUT -3
#define ARKDLS_MEM_FAIL -4
#define ARKDLS_MASSMEM_NULL -5
/* Additional last_flag values */
#define ARKDLS_JACFUNC_UNRECVR -6
#define ARKDLS_JACFUNC_RECVR -7
#define ARKDLS_MASSFUNC_UNRECVR -8
#define ARKDLS_MASSFUNC_RECVR -9
/*===============================================================
FUNCTION TYPES
===============================================================*/
/*---------------------------------------------------------------
Type: ARKDlsDenseJacFn
A dense Jacobian approximation function Jac must be of type
ARKDlsDenseJacFn. Its parameters are:
N is the problem size.
Jac is the dense matrix (of type DlsMat) that will be loaded
by a ARKDlsDenseJacFn with an approximation to the Jacobian
matrix J = (df_i/dy_j) at the point (t,y).
t is the current value of the independent variable.
y is the current value of the dependent variable vector,
namely the predicted value of y(t).
fy is the vector f(t,y).
user_data is a pointer to user data - the same as the user_data
parameter passed to ARKodeSetFdata.
tmp1, tmp2, and tmp3 are pointers to memory allocated for
vectors of length N which can be used by a ARKDlsDenseJacFn
as temporary storage or work space.
A ARKDlsDenseJacFn should return 0 if successful, a positive
value if a recoverable error occurred, and a negative value if
an unrecoverable error occurred.
NOTE: The following are two efficient ways to load a dense Jac:
(1) (with macros - no explicit data structure references)
for (j=0; j < Neq; j++) {
col_j = DENSE_COL(Jac,j);
for (i=0; i < Neq; i++) {
generate J_ij = the (i,j)th Jacobian element
col_j[i] = J_ij;
}
}
(2) (without macros - explicit data structure references)
for (j=0; j < Neq; j++) {
col_j = (Jac->data)[j];
for (i=0; i < Neq; i++) {
generate J_ij = the (i,j)th Jacobian element
col_j[i] = J_ij;
}
}
A third way, using the DENSE_ELEM(A,i,j) macro, is much less
efficient in general. It is only appropriate for use in small
problems in which efficiency of access is NOT a major concern.
NOTE: If the user's Jacobian routine needs other quantities,
they are accessible as follows: hcur (the current stepsize)
and ewt (the error weight vector) are accessible through
ARKodeGetCurrentStep and ARKodeGetErrWeights, respectively
(see arkode.h). The unit roundoff is available as
UNIT_ROUNDOFF defined in sundials_types.h.
---------------------------------------------------------------*/
typedef int (*ARKDlsDenseJacFn)(long int N, realtype t,
N_Vector y, N_Vector fy,
DlsMat Jac, void *user_data,
N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3);
/*---------------------------------------------------------------
Type: ARKDlsDenseMassFn
A dense mass matrix approximation function Mass must be of type
ARKDlsDenseMassFn. Its parameters are:
N is the problem size.
t is the current value of the independent variable.
M is the dense matrix (of type DlsMat) that will be loaded
by a ARKDlsDenseMassFn with an approximation to the mass matrix.
user_data is a pointer to user data - the same as the user_data
parameter passed to ARKodeSetFdata.
tmp1, tmp2, and tmp3 are pointers to memory allocated for
vectors of length N which can be used by a ARKDlsDenseMassFn
as temporary storage or work space.
A ARKDlsDenseMassFn should return 0 if successful, and a
negative value if an unrecoverable error occurred.
---------------------------------------------------------------*/
typedef int (*ARKDlsDenseMassFn)(long int N, realtype t, DlsMat M,
void *user_data, N_Vector tmp1,
N_Vector tmp2, N_Vector tmp3);
/*---------------------------------------------------------------
Type: ARKDlsBandJacFn
A band Jacobian approximation function Jac must have the
prototype given below. Its parameters are:
N is the length of all vector arguments.
mupper is the upper half-bandwidth of the approximate banded
Jacobian. This parameter is the same as the mupper parameter
passed by the user to the linear solver initialization function.
mlower is the lower half-bandwidth of the approximate banded
Jacobian. This parameter is the same as the mlower parameter
passed by the user to the linear solver initialization function.
t is the current value of the independent variable.
y is the current value of the dependent variable vector,
namely the predicted value of y(t).
fy is the vector f(t,y).
Jac is the band matrix (of type DlsMat) that will be loaded
by a ARKDlsBandJacFn with an approximation to the Jacobian matrix
Jac = (df_i/dy_j) at the point (t,y).
Three efficient ways to load J are:
(1) (with macros - no explicit data structure references)
for (j=0; j < n; j++) {
col_j = BAND_COL(Jac,j);
for (i=j-mupper; i <= j+mlower; i++) {
generate J_ij = the (i,j)th Jacobian element
BAND_COL_ELEM(col_j,i,j) = J_ij;
}
}
(2) (with BAND_COL macro, but without BAND_COL_ELEM macro)
for (j=0; j < n; j++) {
col_j = BAND_COL(Jac,j);
for (k=-mupper; k <= mlower; k++) {
generate J_ij = the (i,j)th Jacobian element, i=j+k
col_j[k] = J_ij;
}
}
(3) (without macros - explicit data structure references)
offset = Jac->smu;
for (j=0; j < n; j++) {
col_j = ((Jac->data)[j])+offset;
for (k=-mupper; k <= mlower; k++) {
generate J_ij = the (i,j)th Jacobian element, i=j+k
col_j[k] = J_ij;
}
}
Caution: Jac->smu is generally NOT the same as mupper.
The BAND_ELEM(A,i,j) macro is appropriate for use in small
problems in which efficiency of access is NOT a major concern.
user_data is a pointer to user data - the same as the user_data
parameter passed to ARKodeSetFdata.
NOTE: If the user's Jacobian routine needs other quantities,
they are accessible as follows: hcur (the current stepsize)
and ewt (the error weight vector) are accessible through
ARKodeGetCurrentStep and ARKodeGetErrWeights, respectively
(see arkode.h). The unit roundoff is available as
UNIT_ROUNDOFF defined in sundials_types.h
tmp1, tmp2, and tmp3 are pointers to memory allocated for
vectors of length N which can be used by a ARKDlsBandJacFn
as temporary storage or work space.
A ARKDlsBandJacFn should return 0 if successful, a positive value
if a recoverable error occurred, and a negative value if an
unrecoverable error occurred.
---------------------------------------------------------------*/
typedef int (*ARKDlsBandJacFn)(long int N, long int mupper,
long int mlower, realtype t,
N_Vector y, N_Vector fy,
DlsMat Jac, void *user_data,
N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3);
/*---------------------------------------------------------------
Type: ARKDlsBandMassFn
A band mass matrix approximation function Mass must have the
prototype given below. Its parameters are:
N is the length of all vector arguments.
mupper is the upper half-bandwidth of the approximate banded
Jacobian. This parameter is the same as the mupper parameter
passed by the user to the linear solver initialization function.
mlower is the lower half-bandwidth of the approximate banded
Jacobian. This parameter is the same as the mlower parameter
passed by the user to the linear solver initialization function.
t is the current value of the independent variable.
M is the band matrix (of type DlsMat) that will be loaded
by a ARKDlsBandMassFn with an approximation to the mass matrix
user_data is a pointer to user data - the same as the user_data
parameter passed to ARKodeSetFdata.
tmp1, tmp2, and tmp3 are pointers to memory allocated for
vectors of length N which can be used by a ARKDlsBandMassFn
as temporary storage or work space.
A ARKDlsBandMassFn should return 0 if successful, and a negative
value if an unrecoverable error occurred.
---------------------------------------------------------------*/
typedef int (*ARKDlsBandMassFn)(long int N, long int mupper,
long int mlower, realtype t,
DlsMat M, void *user_data,
N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3);
/*===============================================================
EXPORTED FUNCTIONS
===============================================================*/
/*---------------------------------------------------------------
Optional inputs to the ARKDLS linear solver:
ARKDlsSetDenseJacFn specifies the dense Jacobian approximation
routine to be used for a direct dense linear solver.
ARKDlsSetBandJacFn specifies the band Jacobian approximation
routine to be used for a direct band linear solver.
By default, a difference quotient approximation, supplied with
the solver is used.
The return value is one of:
ARKDLS_SUCCESS if successful
ARKDLS_MEM_NULL if the ARKODE memory was NULL
ARKDLS_LMEM_NULL if the linear solver memory was NULL
---------------------------------------------------------------*/
SUNDIALS_EXPORT int ARKDlsSetDenseJacFn(void *arkode_mem,
ARKDlsDenseJacFn jac);
SUNDIALS_EXPORT int ARKDlsSetBandJacFn(void *arkode_mem,
ARKDlsBandJacFn jac);
/*---------------------------------------------------------------
Optional inputs to the ARKDLS linear solver:
ARKDlsSetDenseMassFn specifies the dense mass matrix
approximation routine to be used for a direct dense solver.
ARKDlsSetBandMassFn specifies the band mass matrix approximation
routine to be used for a direct band solver.
The return value is one of:
ARKDLS_SUCCESS if successful
ARKDLS_MEM_NULL if the ARKODE memory was NULL
ARKDLS_MASSMEM_NULL if the mass matrix solver memory was NULL
---------------------------------------------------------------*/
SUNDIALS_EXPORT int ARKDlsSetDenseMassFn(void *arkode_mem,
ARKDlsDenseMassFn mass);
SUNDIALS_EXPORT int ARKDlsSetBandMassFn(void *arkode_mem,
ARKDlsBandMassFn mass);
/*---------------------------------------------------------------
Optional outputs from the ARKDLS linear solver:
ARKDlsGetWorkSpace returns the real and integer workspace used
by the direct linear solver.
ARKDlsGetMassWorkSpace returns the real and integer workspace used
by the mass matrix direct linear solver.
ARKDlsGetNumJacEvals returns the number of calls made to the
Jacobian evaluation routine jac.
ARKDlsGetNumMassEvals returns the number of calls made to the
mass matrix evaluation routine Mass.
ARKDlsGetNumRhsEvals returns the number of calls to the user
f routine due to finite difference Jacobian
evaluation.
ARKDlsGetLastFlag returns the last error flag set by any of
the ARKDLS interface functions.
ARKDlsGetLastMassFlag returns the last error flag set by any of
the ARKDLS interface mass matrix functions.
The return value of ARKDlsGet* is one of:
ARKDLS_SUCCESS if successful
ARKDLS_MEM_NULL if the ARKODE memory was NULL
ARKDLS_LMEM_NULL if the linear solver memory was NULL
---------------------------------------------------------------*/
SUNDIALS_EXPORT int ARKDlsGetWorkSpace(void *arkode_mem,
long int *lenrwLS,
long int *leniwLS);
SUNDIALS_EXPORT int ARKDlsGetMassWorkSpace(void *arkode_mem,
long int *lenrwMLS,
long int *leniwMLS);
SUNDIALS_EXPORT int ARKDlsGetNumJacEvals(void *arkode_mem,
long int *njevals);
SUNDIALS_EXPORT int ARKDlsGetNumMassEvals(void *arkode_mem,
long int *nmevals);
SUNDIALS_EXPORT int ARKDlsGetNumRhsEvals(void *arkode_mem,
long int *nfevalsLS);
SUNDIALS_EXPORT int ARKDlsGetLastFlag(void *arkode_mem,
long int *flag);
SUNDIALS_EXPORT int ARKDlsGetLastMassFlag(void *arkode_mem,
long int *flag);
/*---------------------------------------------------------------
The following function returns the name of the constant
associated with a ARKDLS return flag
---------------------------------------------------------------*/
SUNDIALS_EXPORT char *ARKDlsGetReturnFlagName(long int flag);
#ifdef __cplusplus
}
#endif
#endif
|