/usr/include/siscone/spherical/momentum.h is in libsiscone-spherical-dev 2.0.6-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 | // -*- C++ -*-
///////////////////////////////////////////////////////////////////////////////
// File: momentum.h //
// Description: header file for 4-momentum class Cmomentum //
// This file is part of the SISCone project. //
// WARNING: this is not the main SISCone trunk but //
// an adaptation to spherical coordinates //
// For more details, see http://projects.hepforge.org/siscone //
// //
// Copyright (c) 2006-2008 Gavin Salam and Gregory Soyez //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation; either version 2 of the License, or //
// (at your option) any later version. //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program; if not, write to the Free Software //
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA //
// //
// $Revision:: 256 $//
// $Date:: 2008-07-14 13:52:16 +0200 (Mon, 14 Jul 2008) $//
///////////////////////////////////////////////////////////////////////////////
#ifndef __SPH_VECTOR_H__
#define __SPH_VECTOR_H__
#include <vector>
#include <math.h>
#include <siscone/reference.h>
#include "geom_2d.h"
#include <siscone/defines.h>
namespace siscone_spherical{
/**
* \class CSph3vector
* \brief base class for managing the spatial part of Cmomentum (defined after)
*
* This class contains the information for particle or group of
* particles management.
* It is adapted to use spherical geometry, where, for our purposes,
* the only time-consuming operation we need is the computation of
* the norm. To compute it once-and-for-all and store it in a local
* variable, you should call the 'build_norm' method.
* On top of that, the angle phi is computed from the x-axis
* and theta from the "north pole".
*/
class CSph3vector{
public:
/// default ctor
CSph3vector();
/// ctor with initialisation
CSph3vector(double _px, double _py, double _pz);
/// default dtor
~CSph3vector();
/// assignment of vectors
CSph3vector& operator = (const CSph3vector &v);
/// addition of vectors
/// WARNING= norm is not updated
const CSph3vector operator + (const CSph3vector &v);
/// subtraction of vectors
/// WARNING= norm is not updated
const CSph3vector operator - (const CSph3vector &v);
/// division by a constant
/// WARNING= norm is not updated
const CSph3vector operator / (const double &r);
/// incrementation of vectors
/// WARNING= norm is not updated
CSph3vector& operator += (const CSph3vector &v);
/// decrementation of vectors
/// WARNING= norm is not updated
CSph3vector& operator -= (const CSph3vector &v);
/// multiplication by a constant
/// WARNING= norm is not updated
CSph3vector& operator *= (const double &r);
/// division by a constant
/// WARNING= norm is not updated
CSph3vector& operator /= (const double &r);
/// computes pT
inline double perp() const {return sqrt(perp2());}
/// computes pT^2
inline double perp2() const {return px*px+py*py;}
/// 3-vect norm
inline double norm() const {return sqrt(px*px+py*py+pz*pz);}
/// 3-vect norm squared
inline double norm2() const {return px*px+py*py+pz*pz;}
/// 3-vect azimuthal angle
inline double phi() const {return atan2(py, px);}
/// 3-vect polar angle
inline double theta() const {return atan2(perp(),pz);}
/// build the spatial normfrom 4-momentum info
/// !!! WARNING !!!
/// !!! computing the norm is the only time-consuming !!!
/// !!! information we need in all computations. !!!
/// !!! use this whenever you need repeated access !!!
/// !!! to the norm to store it in the local variable !!!
void build_norm();
/// just a useful tool to store theta and phi
/// locally (in _theta and _phi) in case you need
/// repeated access
void build_thetaphi();
/// for this direction, compute the two reference directions
/// used to measure angles
void get_angular_directions(CSph3vector &angular_dir1, CSph3vector &angular_dir2);
double px; ///< x-momentum
double py; ///< y-momentum
double pz; ///< z-momentum
double _norm; ///< particle spatial norm (available ONLY after a call to build_norm)
double _theta; ///< particle theta angle (available ONLY after a call to build_thetaphi)
double _phi; ///< particle phi angle (available ONLY after a call to build_thetaphi)
//////////////////////////////////////////////
// the following part is used for checksums //
//////////////////////////////////////////////
siscone::Creference ref; ///< reference number for the vector
};
/**
* \class CSphmomentum
* \brief base class for dynamic coordinates management
*
* This class contains the information for particle or group of
* particles management.
* It is adapted to use spherical geometry, where, for our purposes,
* the only time-consuming operation we need is the computation of
* the norm. To compute it once-and-for-all and store it in a local
* variable, you should call the 'build_norm' method.
* On top of that, the angle phi is computed from the x-axis
* and theta from the "north pole".
*/
class CSphmomentum : public CSph3vector{
public:
/// default ctor
CSphmomentum();
/// init from a 3-vect
CSphmomentum(CSph3vector &init, double E=0.0);
/// ctor with initialisation
CSphmomentum(double _px, double _py, double _pz, double _E);
/// ctor with detailed initialisation
//CSphmomentum(double _eta, double _phi, siscone::Creference _ref);
/// default dtor
~CSphmomentum();
/// computes m
inline double mass() const {return sqrt(mass2());}
/// computes m^2
inline double mass2() const {return perpmass2()-perp2();}
/// transverse mass, mt = sqrt(pt^2+m^2) = sqrt(E^2 - pz^2)
inline double perpmass() const {return sqrt((E-pz)*(E+pz));}
/// transverse mass squared, mt^2 = pt^2+m^2 = E^2 - pz^2
inline double perpmass2() const {return (E-pz)*(E+pz);}
/// computes transverse energy
inline double Et() const {return E/sqrt(1.0+pz*pz/perp2());}
/// computes transverse energy (squared)
inline double Et2() const {return E*E/(1.0+pz*pz/perp2());}
/// assignment of vectors
CSphmomentum& operator = (const CSphmomentum &v);
/// addition of vectors
/// !!! WARNING !!! no updating of eta and phi !!!
const CSphmomentum operator + (const CSphmomentum &v);
/// incrementation of vectors
/// !!! WARNING !!! no updating of eta and phi !!!
CSphmomentum& operator += (const CSphmomentum &v);
/// decrementation of vectors
/// !!! WARNING !!! no updating of eta and phi !!!
CSphmomentum& operator -= (const CSphmomentum &v);
double E; ///< energy
int parent_index; ///< particle number in the parent list
int index; ///< internal particle number
};
/// ordering of two vectors
/// this is by default done w.r.t. their references
bool operator < (const CSphmomentum &v1, const CSphmomentum &v2);
/// ordering of vectors in eta (e.g. used in collinear tests)
bool momentum_theta_less(const CSphmomentum &v1, const CSphmomentum &v2);
/// ordering of vectors in pt
bool momentum_pt_less(const CSphmomentum &v1, const CSphmomentum &v2);
//////////////////////////
// some handy utilities //
//////////////////////////
/// square
inline double sqr(double x){return x*x;}
/// dot product for te spatial 3-vect
/// \param v1 first 4-vect
/// \param v2 second 4-vect
inline double dot_product3(const CSph3vector &v1, const CSph3vector &v2){
//double tmp = v1.px*v2.px + v1.py*v2.py + v1.pz*v2.pz;
//if (!isfinite(tmp)){
// std::cout << "dot_product inf: " << std::endl;
// std::cout << " angles: " << v1._theta << " " << v1._phi << " and " << v2._theta << " " << v2._phi << std::endl;
// std::cout << " moms : " << v1.px << " " << v1.py << " " << v1.pz
// << " and " << v2.px << " " << v2.py << " " << v2.pz << std::endl;
//}
return v1.px*v2.px + v1.py*v2.py + v1.pz*v2.pz;
}
/// cross product for the spatial 3-vect
/// \param v1 first 4-vect
/// \param v2 second 4-vect
inline CSph3vector cross_product3(const CSph3vector &v1, const CSph3vector &v2){
//CSph3vector tmp;
//tmp.px = v1.py*v2.pz-v1.pz*v2.py;
//tmp.py = v1.pz*v2.px-v1.px*v2.pz;
//tmp.pz = v1.px*v2.py-v1.py*v2.px;
//return tmp;
return CSph3vector(v1.py*v2.pz-v1.pz*v2.py,
v1.pz*v2.px-v1.px*v2.pz,
v1.px*v2.py-v1.py*v2.px);
}
/// squared norm of the cross product for the spatial 3-vect (energy is set to 0)
/// \param v1 first 4-vect
/// \param v2 second 4-vect
inline double norm2_cross_product3(const CSph3vector &v1, const CSph3vector &v2){
return sqr(v1.py*v2.pz-v1.pz*v2.py) + sqr(v1.pz*v2.px-v1.px*v2.pz) + sqr(v1.px*v2.py-v1.py*v2.px);
}
/// get tangent squared of the spherical distance between two vectors
/// \param v1 vector defining the first point
/// \param v2 vector defining the second point
inline double get_tan2_distance(const CSphmomentum &v1, const CSphmomentum &v2){
return norm2_cross_product3(v1,v2)/sqr(dot_product3(v1,v2));
}
/// get spherical distance between to vectors
/// \param v1 vector defining the first point
/// \param v2 vector defining the second point
inline double get_distance(const CSph3vector *v1, const CSph3vector *v2){
return atan2(sqrt(norm2_cross_product3(*v1,*v2)), dot_product3(*v1,*v2));
}
/// return true if the two points are distant by less than get spherical distance between two vectors
/// \param v1 vector defining the first point
/// \param v2 vector defining the second point
/// \param tan2R tangent squared of the max distance
/// WARNING: using the tangent here is dangerous for R>pi/2.
/// this never happens per se for "regular R" but
/// it may in the vicinity computation as we're using
/// 2R there.
inline bool is_closer(const CSph3vector *v1, const CSph3vector *v2, const double tan2R){
double dot = dot_product3(*v1,*v2);
return (dot>=0) && (norm2_cross_product3(*v1,*v2)<=tan2R*dot*dot);
}
/// return true if the two points are distant by less than get spherical distance between to vectors
/// \param v1 vector defining the first point
/// \param v2 vector defining the second point
/// \param tan2R tangent squared of the max distance
/// safer version but computes the norm
inline bool is_closer_safer(const CSph3vector *v1, const CSph3vector *v2, const double cosR){
return dot_product3(*v1,*v2)>=cosR*sqrt(v1->norm2()*v2->norm2());
//double dot = dot_product3(*v1,*v2);
//return (dot>=0) && (norm2_cross_product3(*v1,*v2)<tan2R*dot*dot);
}
/// multiply a vector by a constant
/// WARNING: norm not updated
inline CSph3vector operator * (const double &r, const CSph3vector &v){
CSph3vector tmp = v;
return tmp*=r;
}
}
#endif
|