This file is indexed.

/usr/include/xbt/functional.hpp is in libsimgrid-dev 3.18+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/* Copyright (c) 2015-2017. The SimGrid Team. All rights reserved.          */

/* This program is free software; you can redistribute it and/or modify it
 * under the terms of the license (GNU LGPL) which comes with this package. */

#ifndef XBT_FUNCTIONAL_HPP
#define XBT_FUNCTIONAL_HPP

#include <cstddef>
#include <cstdlib>
#include <cstring>

#include <array>
#include <exception>
#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>

#include "xbt/sysdep.h"
#include "xbt/utility.hpp"

namespace simgrid {
namespace xbt {

template<class F>
class MainFunction {
private:
  F code_;
  std::shared_ptr<const std::vector<std::string>> args_;
public:
  MainFunction(F code, std::vector<std::string> args) :
    code_(std::move(code)),
    args_(std::make_shared<const std::vector<std::string>>(std::move(args)))
  {}
  void operator()() const
  {
    const int argc = args_->size();
    std::vector<std::string> args = *args_;
    if (not args.empty()) {
      char noarg[] = {'\0'};
      std::unique_ptr<char* []> argv(new char*[argc + 1]);
      for (int i = 0; i != argc; ++i)
        argv[i]  = args[i].empty() ? noarg : &args[i].front();
      argv[argc] = nullptr;
      code_(argc, argv.get());
    } else
      code_(argc, nullptr);
  }
};

template<class F> inline
std::function<void()> wrapMain(F code, std::vector<std::string> args)
{
  return MainFunction<F>(std::move(code), std::move(args));
}

template<class F> inline
std::function<void()> wrapMain(F code, int argc, const char*const argv[])
{
  std::vector<std::string> args(argv, argv + argc);
  return MainFunction<F>(std::move(code), std::move(args));
}

namespace bits {
template <class F, class Tuple, std::size_t... I>
constexpr auto apply(F&& f, Tuple&& t, simgrid::xbt::index_sequence<I...>)
  -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...))
{
  return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
}

/** Call a functional object with the values in the given tuple (from C++17)
 *
 *  @code{.cpp}
 *  int foo(int a, bool b);
 *
 *  auto args = std::make_tuple(1, false);
 *  int res = apply(foo, args);
 *  @endcode
 **/
template <class F, class Tuple>
constexpr auto apply(F&& f, Tuple&& t)
  -> decltype(simgrid::xbt::bits::apply(
    std::forward<F>(f),
    std::forward<Tuple>(t),
    simgrid::xbt::make_index_sequence<
      std::tuple_size<typename std::decay<Tuple>::type>::value
    >()))
{
  return simgrid::xbt::bits::apply(
    std::forward<F>(f),
    std::forward<Tuple>(t),
    simgrid::xbt::make_index_sequence<
      std::tuple_size<typename std::decay<Tuple>::type>::value
    >());
}

template<class T> class Task;

/** Type-erased run-once task
 *
 *  * Like std::function but callable only once.
 *    However, it works with move-only types.
 *
 *  * Like std::packaged_task<> but without the shared state.
 */
template<class R, class... Args>
class Task<R(Args...)> {
private:

  // Placeholder for some class type:
  struct whatever {};

  // Union used for storage:
#if 0
  typedef typename std::aligned_union<0,
    void*,
    std::pair<void(*)(),void*>,
    std::pair<void(whatever::*)(), whatever*>
  >::type TaskUnion;
#else
  union TaskUnion {
    void* ptr;
    std::pair<void(*)(),void*> funcptr;
    std::pair<void(whatever::*)(), whatever*> memberptr;
    char any1[sizeof(std::pair<void(*)(),void*>)];
    char any2[sizeof(std::pair<void(whatever::*)(), whatever*>)];
    TaskUnion() { /* Nothing to do */}
    ~TaskUnion() { /* Nothing to do */}
  };
#endif

  // Is F suitable for small buffer optimization?
  template<class F>
  static constexpr bool canSBO()
  {
    return sizeof(F) <= sizeof(TaskUnion) &&
      alignof(F) <= alignof(TaskUnion);
  }

  static_assert(canSBO<std::reference_wrapper<whatever>>(),
    "SBO not working for reference_wrapper");

  // Call (and possibly destroy) the function:
  typedef R (*call_function)(TaskUnion&, Args...);
  // Destroy the function (of needed):
  typedef void (*destroy_function)(TaskUnion&);
  // Move the function (otherwise memcpy):
  typedef void (*move_function)(TaskUnion& dest, TaskUnion& src);

  // Vtable of functions for manipulating whatever is in the TaskUnion:
  struct TaskVtable {
    call_function call;
    destroy_function destroy;
    move_function move;
  };

  TaskUnion buffer_;
  const TaskVtable* vtable_ = nullptr;

  void clear()
  {
    if (vtable_ && vtable_->destroy)
      vtable_->destroy(buffer_);
  }

public:
  Task() { /* Nothing to do */}
  explicit Task(std::nullptr_t) { /* Nothing to do */}
  ~Task()
  {
    this->clear();
  }

  Task(Task const&) = delete;

  Task(Task&& that)
  {
    if (that.vtable_ && that.vtable_->move)
      that.vtable_->move(buffer_, that.buffer_);
    else
      std::memcpy(static_cast<void*>(&buffer_), static_cast<void*>(&that.buffer_), sizeof(buffer_));

    vtable_ = that.vtable_;
    that.vtable_ = nullptr;
  }
  Task& operator=(Task that)
  {
    this->clear();
    if (that.vtable_ && that.vtable_->move)
      that.vtable_->move(buffer_, that.buffer_);
    else
      std::memcpy(static_cast<void*>(&buffer_), static_cast<void*>(&that.buffer_), sizeof(buffer_));
    vtable_ = that.vtable_;
    that.vtable_ = nullptr;
    return *this;
  }

private:

  template<class F>
  typename std::enable_if<canSBO<F>()>::type
  init(F code)
  {
    const static TaskVtable vtable {
      // Call:
      [](TaskUnion& buffer, Args... args) {
        F* src = reinterpret_cast<F*>(&buffer);
        F code = std::move(*src);
        src->~F();
        return code(std::forward<Args>(args)...);
      },
      // Destroy:
      std::is_trivially_destructible<F>::value ?
      static_cast<destroy_function>(nullptr) :
      [](TaskUnion& buffer) {
        F* code = reinterpret_cast<F*>(&buffer);
        code->~F();
      },
      // Move:
      [](TaskUnion& dst, TaskUnion& src) {
        F* src_code = reinterpret_cast<F*>(&src);
        F* dst_code = reinterpret_cast<F*>(&dst);
        new(dst_code) F(std::move(*src_code));
        src_code->~F();
      }
    };
    new(&buffer_) F(std::move(code));
    vtable_ = &vtable;
  }

  template <class F> typename std::enable_if<not canSBO<F>()>::type init(F code)
  {
    const static TaskVtable vtable {
      // Call:
      [](TaskUnion& buffer, Args... args) {
        // Delete F when we go out of scope:
        std::unique_ptr<F> code(*reinterpret_cast<F**>(&buffer));
        return (*code)(std::forward<Args>(args)...);
      },
      // Destroy:
      [](TaskUnion& buffer) {
        F* code = *reinterpret_cast<F**>(&buffer);
        delete code;
      },
      // Move:
      nullptr
    };
    *reinterpret_cast<F**>(&buffer_) = new F(std::move(code));
    vtable_ = &vtable;
  }

public:
  template <class F> explicit Task(F code) { this->init(std::move(code)); }

  operator bool() const { return vtable_ != nullptr; }
  bool operator!() const { return vtable_ == nullptr; }

  R operator()(Args... args)
  {
    if (vtable_ == nullptr)
      throw std::bad_function_call();
    const TaskVtable* vtable = vtable_;
    vtable_ = nullptr;
    return vtable->call(buffer_, std::forward<Args>(args)...);
  }
};

template<class F, class... Args>
class TaskImpl {
private:
  F code_;
  std::tuple<Args...> args_;
  typedef decltype(simgrid::xbt::apply(std::move(code_), std::move(args_))) result_type;
public:
  TaskImpl(F code, std::tuple<Args...> args) :
    code_(std::move(code)),
    args_(std::move(args))
  {}
  result_type operator()()
  {
    return simgrid::xbt::apply(std::move(code_), std::move(args_));
  }
};

template<class F, class... Args>
auto makeTask(F code, Args... args)
-> Task< decltype(code(std::move(args)...))() >
{
  TaskImpl<F, Args...> task(std::move(code), std::make_tuple(std::move(args)...));
  return Task<decltype(code(std::move(args)...))()>(std::move(task));
}

}
}

#endif