/usr/include/xbt/functional.hpp is in libsimgrid-dev 3.18+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | /* Copyright (c) 2015-2017. The SimGrid Team. All rights reserved. */
/* This program is free software; you can redistribute it and/or modify it
* under the terms of the license (GNU LGPL) which comes with this package. */
#ifndef XBT_FUNCTIONAL_HPP
#define XBT_FUNCTIONAL_HPP
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <array>
#include <exception>
#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include "xbt/sysdep.h"
#include "xbt/utility.hpp"
namespace simgrid {
namespace xbt {
template<class F>
class MainFunction {
private:
F code_;
std::shared_ptr<const std::vector<std::string>> args_;
public:
MainFunction(F code, std::vector<std::string> args) :
code_(std::move(code)),
args_(std::make_shared<const std::vector<std::string>>(std::move(args)))
{}
void operator()() const
{
const int argc = args_->size();
std::vector<std::string> args = *args_;
if (not args.empty()) {
char noarg[] = {'\0'};
std::unique_ptr<char* []> argv(new char*[argc + 1]);
for (int i = 0; i != argc; ++i)
argv[i] = args[i].empty() ? noarg : &args[i].front();
argv[argc] = nullptr;
code_(argc, argv.get());
} else
code_(argc, nullptr);
}
};
template<class F> inline
std::function<void()> wrapMain(F code, std::vector<std::string> args)
{
return MainFunction<F>(std::move(code), std::move(args));
}
template<class F> inline
std::function<void()> wrapMain(F code, int argc, const char*const argv[])
{
std::vector<std::string> args(argv, argv + argc);
return MainFunction<F>(std::move(code), std::move(args));
}
namespace bits {
template <class F, class Tuple, std::size_t... I>
constexpr auto apply(F&& f, Tuple&& t, simgrid::xbt::index_sequence<I...>)
-> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...))
{
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
}
/** Call a functional object with the values in the given tuple (from C++17)
*
* @code{.cpp}
* int foo(int a, bool b);
*
* auto args = std::make_tuple(1, false);
* int res = apply(foo, args);
* @endcode
**/
template <class F, class Tuple>
constexpr auto apply(F&& f, Tuple&& t)
-> decltype(simgrid::xbt::bits::apply(
std::forward<F>(f),
std::forward<Tuple>(t),
simgrid::xbt::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value
>()))
{
return simgrid::xbt::bits::apply(
std::forward<F>(f),
std::forward<Tuple>(t),
simgrid::xbt::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value
>());
}
template<class T> class Task;
/** Type-erased run-once task
*
* * Like std::function but callable only once.
* However, it works with move-only types.
*
* * Like std::packaged_task<> but without the shared state.
*/
template<class R, class... Args>
class Task<R(Args...)> {
private:
// Placeholder for some class type:
struct whatever {};
// Union used for storage:
#if 0
typedef typename std::aligned_union<0,
void*,
std::pair<void(*)(),void*>,
std::pair<void(whatever::*)(), whatever*>
>::type TaskUnion;
#else
union TaskUnion {
void* ptr;
std::pair<void(*)(),void*> funcptr;
std::pair<void(whatever::*)(), whatever*> memberptr;
char any1[sizeof(std::pair<void(*)(),void*>)];
char any2[sizeof(std::pair<void(whatever::*)(), whatever*>)];
TaskUnion() { /* Nothing to do */}
~TaskUnion() { /* Nothing to do */}
};
#endif
// Is F suitable for small buffer optimization?
template<class F>
static constexpr bool canSBO()
{
return sizeof(F) <= sizeof(TaskUnion) &&
alignof(F) <= alignof(TaskUnion);
}
static_assert(canSBO<std::reference_wrapper<whatever>>(),
"SBO not working for reference_wrapper");
// Call (and possibly destroy) the function:
typedef R (*call_function)(TaskUnion&, Args...);
// Destroy the function (of needed):
typedef void (*destroy_function)(TaskUnion&);
// Move the function (otherwise memcpy):
typedef void (*move_function)(TaskUnion& dest, TaskUnion& src);
// Vtable of functions for manipulating whatever is in the TaskUnion:
struct TaskVtable {
call_function call;
destroy_function destroy;
move_function move;
};
TaskUnion buffer_;
const TaskVtable* vtable_ = nullptr;
void clear()
{
if (vtable_ && vtable_->destroy)
vtable_->destroy(buffer_);
}
public:
Task() { /* Nothing to do */}
explicit Task(std::nullptr_t) { /* Nothing to do */}
~Task()
{
this->clear();
}
Task(Task const&) = delete;
Task(Task&& that)
{
if (that.vtable_ && that.vtable_->move)
that.vtable_->move(buffer_, that.buffer_);
else
std::memcpy(static_cast<void*>(&buffer_), static_cast<void*>(&that.buffer_), sizeof(buffer_));
vtable_ = that.vtable_;
that.vtable_ = nullptr;
}
Task& operator=(Task that)
{
this->clear();
if (that.vtable_ && that.vtable_->move)
that.vtable_->move(buffer_, that.buffer_);
else
std::memcpy(static_cast<void*>(&buffer_), static_cast<void*>(&that.buffer_), sizeof(buffer_));
vtable_ = that.vtable_;
that.vtable_ = nullptr;
return *this;
}
private:
template<class F>
typename std::enable_if<canSBO<F>()>::type
init(F code)
{
const static TaskVtable vtable {
// Call:
[](TaskUnion& buffer, Args... args) {
F* src = reinterpret_cast<F*>(&buffer);
F code = std::move(*src);
src->~F();
return code(std::forward<Args>(args)...);
},
// Destroy:
std::is_trivially_destructible<F>::value ?
static_cast<destroy_function>(nullptr) :
[](TaskUnion& buffer) {
F* code = reinterpret_cast<F*>(&buffer);
code->~F();
},
// Move:
[](TaskUnion& dst, TaskUnion& src) {
F* src_code = reinterpret_cast<F*>(&src);
F* dst_code = reinterpret_cast<F*>(&dst);
new(dst_code) F(std::move(*src_code));
src_code->~F();
}
};
new(&buffer_) F(std::move(code));
vtable_ = &vtable;
}
template <class F> typename std::enable_if<not canSBO<F>()>::type init(F code)
{
const static TaskVtable vtable {
// Call:
[](TaskUnion& buffer, Args... args) {
// Delete F when we go out of scope:
std::unique_ptr<F> code(*reinterpret_cast<F**>(&buffer));
return (*code)(std::forward<Args>(args)...);
},
// Destroy:
[](TaskUnion& buffer) {
F* code = *reinterpret_cast<F**>(&buffer);
delete code;
},
// Move:
nullptr
};
*reinterpret_cast<F**>(&buffer_) = new F(std::move(code));
vtable_ = &vtable;
}
public:
template <class F> explicit Task(F code) { this->init(std::move(code)); }
operator bool() const { return vtable_ != nullptr; }
bool operator!() const { return vtable_ == nullptr; }
R operator()(Args... args)
{
if (vtable_ == nullptr)
throw std::bad_function_call();
const TaskVtable* vtable = vtable_;
vtable_ = nullptr;
return vtable->call(buffer_, std::forward<Args>(args)...);
}
};
template<class F, class... Args>
class TaskImpl {
private:
F code_;
std::tuple<Args...> args_;
typedef decltype(simgrid::xbt::apply(std::move(code_), std::move(args_))) result_type;
public:
TaskImpl(F code, std::tuple<Args...> args) :
code_(std::move(code)),
args_(std::move(args))
{}
result_type operator()()
{
return simgrid::xbt::apply(std::move(code_), std::move(args_));
}
};
template<class F, class... Args>
auto makeTask(F code, Args... args)
-> Task< decltype(code(std::move(args)...))() >
{
TaskImpl<F, Args...> task(std::move(code), std::make_tuple(std::move(args)...));
return Task<decltype(code(std::move(args)...))()>(std::move(task));
}
}
}
#endif
|