This file is indexed.

/usr/include/simgrid/kernel/future.hpp is in libsimgrid-dev 3.18+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/* Copyright (c) 2016-2017. The SimGrid Team.
 * All rights reserved.                                                     */

/* This program is free software; you can redistribute it and/or modify it
 * under the terms of the license (GNU LGPL) which comes with this package. */

#ifndef SIMGRID_KERNEL_FUTURE_HPP
#define SIMGRID_KERNEL_FUTURE_HPP

#include <functional>
#include <future>
#include <memory>
#include <utility>
#include <type_traits>

#include <boost/optional.hpp>

#include <xbt/base.h>
#include <xbt/functional.hpp>
#include <xbt/future.hpp>

namespace simgrid {
namespace kernel {

// There are the public classes:
template<class T> class Future;
template<class T> class Promise;

// Those are implementation details:
enum class FutureStatus;
template<class T> class FutureState;

enum class FutureStatus {
  not_ready,
  ready,
  done,
};

template<class T>
struct is_future : std::false_type {};
template<class T>
struct is_future<Future<T>> : std::true_type {};

/** Bases stuff for all @ref simgrid::kernel::FutureState<T> */
class FutureStateBase {
public:
  // No copy/move:
  FutureStateBase(FutureStateBase const&) = delete;
  FutureStateBase& operator=(FutureStateBase const&) = delete;

  XBT_PUBLIC(void) schedule(simgrid::xbt::Task<void()>&& job);

  void set_exception(std::exception_ptr exception)
  {
    xbt_assert(exception_ == nullptr);
    if (status_ != FutureStatus::not_ready)
      throw std::future_error(std::future_errc::promise_already_satisfied);
    exception_ = std::move(exception);
    this->set_ready();
  }

  void set_continuation(simgrid::xbt::Task<void()>&& continuation)
  {
    xbt_assert(not continuation_);
    switch (status_) {
    case FutureStatus::done:
      // This is not supposed to happen if continuation is set
      // via the Promise:
      xbt_die("Set continuation on finished future");
      break;
    case FutureStatus::ready:
      // The future is ready, execute the continuation directly.
      // We might execute it from the event loop instead:
      schedule(std::move(continuation));
      break;
    case FutureStatus::not_ready:
      // The future is not ready so we mast keep the continuation for
      // executing it later:
      continuation_ = std::move(continuation);
      break;
    default:
      DIE_IMPOSSIBLE;
    }
  }

  FutureStatus get_status() const
  {
    return status_;
  }

  bool is_ready() const
  {
    return status_ == FutureStatus::ready;
  }

protected:
  FutureStateBase() = default;
  ~FutureStateBase() = default;

  /** Set the future as ready and trigger the continuation */
  void set_ready()
  {
    status_ = FutureStatus::ready;
    if (continuation_) {
      // We unregister the continuation before executing it.
      // We need to do this becase the current implementation of the
      // continuation has a shared_ptr to the FutureState.
      auto continuation = std::move(continuation_);
      this->schedule(std::move(continuation));
    }
  }

  /** Set the future as done and raise an exception if any
   *
   *  This does half the job of `.get()`.
   **/
  void resolve()
  {
    if (status_ != FutureStatus::ready)
      xbt_die("Deadlock: this future is not ready");
    status_ = FutureStatus::done;
    if (exception_) {
      std::exception_ptr exception = std::move(exception_);
      exception_ = nullptr;
      std::rethrow_exception(std::move(exception));
    }
  }

private:
  FutureStatus status_ = FutureStatus::not_ready;
  std::exception_ptr exception_;
  simgrid::xbt::Task<void()> continuation_;
};

/** Shared state for future and promises
 *
 *  You are not expected to use them directly but to create them
 *  implicitely through a @ref simgrid::kernel::Promise.
 *  Alternatively kernel operations could inherit or contain FutureState
 *  if they are managed with @ref std::shared_ptr.
 **/
template<class T>
class FutureState : public FutureStateBase {
public:

  void set_value(T value)
  {
    if (this->get_status() != FutureStatus::not_ready)
      throw std::future_error(std::future_errc::promise_already_satisfied);
    value_ = std::move(value);
    this->set_ready();
  }

  T get()
  {
    this->resolve();
    xbt_assert(this->value_);
    auto result = std::move(this->value_.get());
    this->value_ = boost::optional<T>();
    return std::move(result);
  }

private:
  boost::optional<T> value_;
};

template<class T>
class FutureState<T&> : public FutureStateBase {
public:
  void set_value(T& value)
  {
    if (this->get_status() != FutureStatus::not_ready)
      throw std::future_error(std::future_errc::promise_already_satisfied);
    value_ = &value;
    this->set_ready();
  }

  T& get()
  {
    this->resolve();
    xbt_assert(this->value_);
    T* result = value_;
    value_ = nullptr;
    return *result;
  }

private:
  T* value_ = nullptr;
};

template<>
class FutureState<void> : public FutureStateBase {
public:
  void set_value()
  {
    if (this->get_status() != FutureStatus::not_ready)
      throw std::future_error(std::future_errc::promise_already_satisfied);
    this->set_ready();
  }

  void get()
  {
    this->resolve();
  }
};

template<class T>
void bindPromise(Promise<T> promise, Future<T> future)
{
  class PromiseBinder {
  public:
    explicit PromiseBinder(Promise<T> promise) : promise_(std::move(promise)) {}
    void operator()(Future<T> future)
    {
      simgrid::xbt::setPromise(promise_, future);
    }
  private:
    Promise<T> promise_;
  };
  future.then_(PromiseBinder(std::move(promise)));
}

template<class T> Future<T> unwrapFuture(Future<Future<T>> future);

/** Result of some (probably) asynchronous operation in the SimGrid kernel
 *
 * @ref simgrid::simix::Future and @ref simgrid::simix::Future provide an
 * abstration for asynchronous stuff happening in the SimGrid kernel. They
 * are based on C++1z futures.
 *
 * The future represents a value which will be available at some point when this
 * asynchronous operaiont is finished. Alternatively, if this operations fails,
 * the result of the operation might be an exception.
 *
 *  As the operation is possibly no terminated yet, we cannot get the result
 *  yet. Moreover, as we cannot block in the SimGrid kernel we cannot wait for
 *  it. However, we can attach some code/callback/continuation which will be
 *  executed when the operation terminates.
 *
 *  Example of the API (`simgrid::kernel::createProcess` does not exist):
 *  <pre>
 *  // Create a new process using the Worker code, this process returns
 *  // a std::string:
 *  simgrid::kernel::Future<std::string> future =
 *     simgrid::kernel::createProcess("worker42", host, Worker(42));
 *  // At this point, we just created the process so the result is not available.
 *  // However, we can attach some work do be done with this result:
 *  future.then([](simgrid::kernel::Future<std::string> result) {
 *    // This code is called when the operation is completed so the result is
 *    // available:
 *    try {
 *      // Try to get value, this might throw an exception if the operation
 *      // failed (such as an exception throwed by the worker process):
 *      std::string value = result.get();
 *      XBT_INFO("Value: %s", value.c_str());
 *    }
 *    catch(std::exception& e) {
 *      // This is an exception from the asynchronous operation:
 *      XBT_INFO("Error: %e", e.what());
 *    }
 *  );
 *  </pre>
 *
 *  This is based on C++1z @ref std::future but with some differences:
 *
 *  * there is no thread synchronization (atomic, mutex, condition variable,
 *    etc.) because everything happens in the SimGrid event loop;
 *
 *  * it is purely asynchronous, you are expected to use `.then()`;
 *
 *  * inside the `.then()`, `.get()` can be used;
 *
 *  * `.get()` can only be used when `.is_ready()` (as everything happens in
 *     a single-thread, the future would be guaranted to deadlock if `.get()`
 *     is called when the future is not ready);
 *
 *  * there is no future chaining support for now (`.then().then()`);
 *
 *  * there is no sharing (`shared_future`) for now.
 */
template<class T>
class Future {
public:
  Future() = default;
  explicit Future(std::shared_ptr<FutureState<T>> state) : state_(std::move(state)) {}

  // Move type:
  Future(Future&) = delete;
  Future& operator=(Future&) = delete;
  Future(Future&& that) : state_(std::move(that.state_)) {}
  Future& operator=(Future&& that)
  {
    state_ = std::move(that.state_);
    return *this;
  }

  /** Whether the future is valid:.
   *
   *  A future which as been used (`.then` of `.get`) becomes invalid.
   *
   *  We can use `.then` on a valid future.
   */
  bool valid() const
  {
    return state_ != nullptr;
  }

  /** Whether the future is ready
   *
   *  A future is ready when it has an associated value or exception.
   *
   *  We can use `.get()` on ready futures.
   **/
  bool is_ready() const
  {
    return state_ != nullptr && state_->is_ready();
  }

  /** Attach a continuation to this future
   *
   *  This is like .then() but avoid the creation of a new future.
   */
  template<class F>
  void then_(F continuation)
  {
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    // Give shared-ownership to the continuation:
    auto state = std::move(state_);
    state->set_continuation(simgrid::xbt::makeTask(
      std::move(continuation), state));
  }

  /** Attach a continuation to this future
   *
   *  This version never does future unwrapping.
   */
  template<class F>
  auto thenNoUnwrap(F continuation)
  -> Future<decltype(continuation(std::move(*this)))>
  {
    typedef decltype(continuation(std::move(*this))) R;
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    auto state = std::move(state_);
    // Create a new future...
    Promise<R> promise;
    Future<R> future = promise.get_future();
    // ...and when the current future is ready...
    state->set_continuation(simgrid::xbt::makeTask(
      [](Promise<R> promise, std::shared_ptr<FutureState<T>> state, F continuation) {
        // ...set the new future value by running the continuation.
        Future<T> future(std::move(state));
        simgrid::xbt::fulfillPromise(promise,[&]{
          return continuation(std::move(future));
        });
      },
      std::move(promise), state, std::move(continuation)));
    return std::move(future);
  }

  /** Attach a continuation to this future
   *
   *  The future must be valid in order to make this call.
   *  The continuation is executed when the future becomes ready.
   *  The future becomes invalid after this call.
   *
   * @param continuation This function is called with a ready future
   *                     the future is ready
   * @exception std::future_error no state is associated with the future
   */
  template <class F>
  auto then(F continuation) -> typename std::enable_if<not is_future<decltype(continuation(std::move(*this)))>::value,
                                                       Future<decltype(continuation(std::move(*this)))>>::type
  {
    return this->thenNoUnwrap(std::move(continuation));
  }

  /** Attach a continuation to this future (future chaining) */
  template<class F>
  auto then(F continuation)
  -> typename std::enable_if<
       is_future<decltype(continuation(std::move(*this)))>::value,
       decltype(continuation(std::move(*this)))
     >::type
  {
    return unwrapFuture(this->thenNoUnwap(std::move(continuation)));
  }

  /** Get the value from the future
   *
   *  The future must be valid and ready in order to make this call.
   *  @ref std::future blocks when the future is not ready but we are
   *  completely single-threaded so blocking would be a deadlock.
   *  After the call, the future becomes invalid.
   *
   *  @return                      value of the future
   *  @exception any               Exception from the future
   *  @exception std::future_error no state is associated with the future
   */
  T get()
  {
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    std::shared_ptr<FutureState<T>> state = std::move(state_);
    return state->get();
  }

private:
  std::shared_ptr<FutureState<T>> state_;
};

template<class T>
Future<T> unwrapFuture(Future<Future<T>> future)
{
  Promise<T> promise;
  Future<T> result = promise.get_future();
  bindPromise(std::move(promise), std::move(future));
  return std::move(result);
}

/** Producer side of a @ref simgrid::kernel::Future
 *
 *  A @ref Promise is connected to some `Future` and can be used to
 *  set its result.
 *
 *  Similar to @ref std::promise
 *
 *  <code>
 *  // Create a promise and a future:
 *  auto promise = std::make_shared<simgrid::kernel::Promise<T>>();
 *  auto future = promise->get_future();
 *
 *  SIMIX_timer_set(date, [promise] {
 *    try {
 *      int value = compute_the_value();
 *      if (value < 0)
 *        throw std::logic_error("Bad value");
 *      // Whenever the operation is completed, we set the value
 *      // for the future:
 *      promise.set_value(value);
 *    }
 *    catch (...) {
 *      // If an error occured, we can set an exception which
 *      // will be throwed buy future.get():
 *      promise.set_exception(std::current_exception());
 *    }
 *  });
 *
 *  // Return the future to the caller:
 *  return future;
 *  </code>
 **/
template<class T>
class Promise {
public:
  Promise() : state_(std::make_shared<FutureState<T>>()) {}
  explicit Promise(std::shared_ptr<FutureState<T>> state) : state_(std::move(state)) {}

  // Move type
  Promise(Promise const&) = delete;
  Promise& operator=(Promise const&) = delete;
  Promise(Promise&& that) :
    state_(std::move(that.state_)), future_get_(that.future_get_)
  {
    that.future_get_ = false;
  }

  Promise& operator=(Promise&& that)
  {
    this->state_ = std::move(that.state_);
    this->future_get_ = that.future_get_;
    that.future_get_ = false;
    return *this;
  }
  Future<T> get_future()
  {
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    if (future_get_)
      throw std::future_error(std::future_errc::future_already_retrieved);
    future_get_ = true;
    return Future<T>(state_);
  }
  void set_value(T value)
  {
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    state_->set_value(std::move(value));
  }
  void set_exception(std::exception_ptr exception)
  {
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    state_->set_exception(std::move(exception));
  }
  ~Promise()
  {
    if (state_ && state_->get_status() == FutureStatus::not_ready)
      state_->set_exception(std::make_exception_ptr(
        std::future_error(std::future_errc::broken_promise)));
  }

private:
  std::shared_ptr<FutureState<T>> state_;
  bool future_get_ = false;
};

template<>
class Promise<void> {
public:
  Promise() : state_(std::make_shared<FutureState<void>>()) {}
  explicit Promise(std::shared_ptr<FutureState<void>> state) : state_(std::move(state)) {}
  ~Promise()
  {
    if (state_ && state_->get_status() == FutureStatus::not_ready)
      state_->set_exception(std::make_exception_ptr(
        std::future_error(std::future_errc::broken_promise)));
  }

  // Move type
  Promise(Promise const&) = delete;
  Promise& operator=(Promise const&) = delete;
  Promise(Promise&& that) :
    state_(std::move(that.state_)), future_get_(that.future_get_)
  {
    that.future_get_ = false;
  }
  Promise& operator=(Promise&& that)
  {
    this->state_ = std::move(that.state_);
    this->future_get_ = that.future_get_;
    that.future_get_ = false;
    return *this;
  }

  Future<void> get_future()
  {
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    if (future_get_)
      throw std::future_error(std::future_errc::future_already_retrieved);
    future_get_ = true;
    return Future<void>(state_);
  }
  void set_value()
  {
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    state_->set_value();
  }
  void set_exception(std::exception_ptr exception)
  {
    if (state_ == nullptr)
      throw std::future_error(std::future_errc::no_state);
    state_->set_exception(std::move(exception));
  }

private:
  std::shared_ptr<FutureState<void>> state_;
  bool future_get_ = false;
};

}
}

#endif