This file is indexed.

/usr/include/simgear/math/SGVec2.hxx is in libsimgear-dev 1:2018.1.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// Copyright (C) 2006-2009  Mathias Froehlich - Mathias.Froehlich@web.de
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
//

#ifndef SGVec2_H
#define SGVec2_H

#include <iosfwd>

#include <simgear/math/SGLimits.hxx>
#include <simgear/math/SGMisc.hxx>
#include <simgear/math/SGMathFwd.hxx>
#include <simgear/math/simd.hxx>

/// 2D Vector Class
template<typename T>
class SGVec2 {
public:
  typedef T value_type;

  /// Default constructor. Does not initialize at all.
  /// If you need them zero initialized, use SGVec2::zeros()
  SGVec2(void)
  {
    /// Initialize with nans in the debug build, that will guarantee to have
    /// a fast uninitialized default constructor in the release but shows up
    /// uninitialized values in the debug build very fast ...
#ifndef NDEBUG
    for (unsigned i = 0; i < 2; ++i)
      data()[i] = SGLimits<T>::quiet_NaN();
#endif
  }
  /// Constructor. Initialize by the given values
  SGVec2(T x, T y)
  { _data = simd4_t<T,2>(x, y); }
  /// Constructor. Initialize by the content of a plain array,
  /// make sure it has at least 2 elements
  explicit SGVec2(const T* d)
  { _data = d ? simd4_t<T,2>(d) : simd4_t<T,2>(T(0)); }
  template<typename S>
  explicit SGVec2(const SGVec2<S>& d)
  { data()[0] = d[0]; data()[1] = d[1]; }

  /// Access by index, the index is unchecked
  const T& operator()(unsigned i) const
  { return data()[i]; }
  /// Access by index, the index is unchecked
  T& operator()(unsigned i)
  { return data()[i]; }

  /// Access raw data by index, the index is unchecked
  const T& operator[](unsigned i) const
  { return data()[i]; }
  /// Access raw data by index, the index is unchecked
  T& operator[](unsigned i)
  { return data()[i]; }

  /// Access the x component
  const T& x(void) const
  { return data()[0]; }
  /// Access the x component
  T& x(void)
  { return data()[0]; }
  /// Access the y component
  const T& y(void) const
  { return data()[1]; }
  /// Access the y component
  T& y(void)
  { return data()[1]; }

  /// Access raw data
  const T (&data(void) const)[2]
  { return _data.ptr(); }
  /// Access raw data
  T (&data(void))[2]
  { return _data.ptr(); }
  const simd4_t<T,2> (&simd2(void) const)
  { return _data; }
  /// Readonly raw storage interface
  simd4_t<T,2> (&simd2(void))
  { return _data; }

  /// Inplace addition
  SGVec2& operator+=(const SGVec2& v)
  { _data += v.simd2(); return *this; }
  /// Inplace subtraction
  SGVec2& operator-=(const SGVec2& v)
  { _data -= v.simd2(); return *this; }
  /// Inplace scalar multiplication
  template<typename S>
  SGVec2& operator*=(S s)
  { _data *= s; return *this; }
  /// Inplace scalar multiplication by 1/s
  template<typename S>
  SGVec2& operator/=(S s)
  { _data*=(1/T(s)); return *this; }

  /// Return an all zero vector
  static SGVec2 zeros(void)
  { return SGVec2(0, 0); }
  /// Return unit vectors
  static SGVec2 e1(void)
  { return SGVec2(1, 0); }
  static SGVec2 e2(void)
  { return SGVec2(0, 1); }

private:
  simd4_t<T,2> _data;
};

/// Unary +, do nothing ...
template<typename T>
inline
const SGVec2<T>&
operator+(const SGVec2<T>& v)
{ return v; }

/// Unary -, do nearly nothing
template<typename T>
inline
SGVec2<T>
operator-(SGVec2<T> v)
{ v *= -1; return v; }

/// Binary +
template<typename T>
inline
SGVec2<T>
operator+(SGVec2<T> v1, const SGVec2<T>& v2)
{ v1.simd2() += v2.simd2(); return v1; }

/// Binary -
template<typename T>
inline
SGVec2<T>
operator-(SGVec2<T> v1, const SGVec2<T>& v2)
{ v1.simd2() -= v2.simd2(); return v1; }

/// Scalar multiplication
template<typename S, typename T>
inline
SGVec2<T>
operator*(S s, SGVec2<T> v)
{ v.simd2() *= s; return v; }

/// Scalar multiplication
template<typename S, typename T>
inline
SGVec2<T>
operator*(SGVec2<T> v, S s)
{ v.simd2() *= s; return v; }

/// multiplication as a multiplicator, that is assume that the first vector
/// represents a 2x2 diagonal matrix with the diagonal elements in the vector.
/// Then the result is the product of that matrix times the second vector.
template<typename T>
inline
SGVec2<T>
mult(SGVec2<T> v1, const SGVec2<T>& v2)
{ v1.simd2() *= v2.simd2(); return v1; }

/// component wise min
template<typename T>
inline
SGVec2<T>
min(SGVec2<T> v1, const SGVec2<T>& v2)
{ v1.simd2() = simd4::min(v1.simd2(), v2.simd2()); return v1; }
template<typename S, typename T>
inline
SGVec2<T>
min(SGVec2<T> v, S s)
{ v.simd2() = simd4::min(v.simd2(), simd4_t<T,2>(s)); return v; }
template<typename S, typename T>
inline
SGVec2<T>
min(S s, SGVec2<T> v)
{ v.sim2() = simd4::min(v.simd2(), simd4_t<T,2>(s)); return v; }

/// component wise max
template<typename T>
inline
SGVec2<T>
max(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ v1 = simd4::max(v1.simd2(), v2.simd2()); return v1; }
template<typename S, typename T>
inline
SGVec2<T>
max(const SGVec2<T>& v, S s)
{ v = simd4::max(v.simd2(), simd4_t<T,2>(s)); return v; }
template<typename S, typename T>
inline
SGVec2<T>
max(S s, const SGVec2<T>& v)
{ v = simd4::max(v.simd2(), simd4_t<T,2>(s)); return v; }

/// Add two vectors taking care of (integer) overflows. The values are limited
/// to the respective minimum and maximum values.
template<class T>
SGVec2<T> addClipOverflow(SGVec2<T> const& lhs, SGVec2<T> const& rhs)
{
  return SGVec2<T>(
    SGMisc<T>::addClipOverflow(lhs.x(), rhs.x()),
    SGMisc<T>::addClipOverflow(lhs.y(), rhs.y())
  );
}

/// Scalar dot product
template<typename T>
inline
T
dot(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return simd4::dot(v1.simd2(), v2.simd2()); }

/// The euclidean norm of the vector, that is what most people call length
template<typename T>
inline
T
norm(const SGVec2<T>& v)
{ return simd4::magnitude(v.simd2()); }

/// The euclidean norm of the vector, that is what most people call length
template<typename T>
inline
T
length(const SGVec2<T>& v)
{ return simd4::magnitude(v.simd2()); }

/// The 1-norm of the vector, this one is the fastest length function we
/// can implement on modern cpu's
template<typename T>
inline
T
norm1(SGVec2<T> v)
{ v.simd2() = simd4::abs(v.simd2()); return (v(0)+v(1)); }

/// The inf-norm of the vector
template<typename T>
inline
T
normI(SGVec2<T> v)
{
  v.simd2() = simd4::abs(v.simd2());
  return SGMisc<T>::max(v(0), v(1));
}

/// The euclidean norm of the vector, that is what most people call length
template<typename T>
inline
SGVec2<T>
normalize(const SGVec2<T>& v)
{
  T normv = norm(v);
  if (normv <= SGLimits<T>::min())
    return SGVec2<T>::zeros();
  return (1/normv)*v;
}

/// Return true if exactly the same
template<typename T>
inline
bool
operator==(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return v1(0) == v2(0) && v1(1) == v2(1); }

/// Return true if not exactly the same
template<typename T>
inline
bool
operator!=(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return ! (v1 == v2); }

/// Return true if smaller, good for putting that into a std::map
template<typename T>
inline
bool
operator<(const SGVec2<T>& v1, const SGVec2<T>& v2)
{
  if (v1(0) < v2(0)) return true;
  else if (v2(0) < v1(0)) return false;
  else return (v1(1) < v2(1));
}

template<typename T>
inline
bool
operator<=(const SGVec2<T>& v1, const SGVec2<T>& v2)
{
  if (v1(0) < v2(0)) return true;
  else if (v2(0) < v1(0)) return false;
  else return (v1(1) <= v2(1));
}

template<typename T>
inline
bool
operator>(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return operator<(v2, v1); }

template<typename T>
inline
bool
operator>=(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return operator<=(v2, v1); }

/// Return true if equal to the relative tolerance tol
template<typename T>
inline
bool
equivalent(const SGVec2<T>& v1, const SGVec2<T>& v2, T rtol, T atol)
{ return norm1(v1 - v2) < rtol*(norm1(v1) + norm1(v2)) + atol; }

/// Return true if equal to the relative tolerance tol
template<typename T>
inline
bool
equivalent(const SGVec2<T>& v1, const SGVec2<T>& v2, T rtol)
{ return norm1(v1 - v2) < rtol*(norm1(v1) + norm1(v2)); }

/// Return true if about equal to roundoff of the underlying type
template<typename T>
inline
bool
equivalent(const SGVec2<T>& v1, const SGVec2<T>& v2)
{
  T tol = 100*SGLimits<T>::epsilon();
  return equivalent(v1, v2, tol, tol);
}

/// The euclidean distance of the two vectors
template<typename T>
inline
T
dist(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return simd4::magnitude(v1.simd2() - v2.simd2()); }

/// The squared euclidean distance of the two vectors
template<typename T>
inline
T
distSqr(SGVec2<T> v1, const SGVec2<T>& v2)
{ return simd4::magnitude2(v1.simd2() - v2.simd2()); }

// calculate the projection of u along the direction of d.
template<typename T>
inline
SGVec2<T>
projection(const SGVec2<T>& u, const SGVec2<T>& d)
{
  T denom = simd4::magnitude2(d.simd2());
  T ud = dot(u, d);
  if (SGLimits<T>::min() < denom) return u;
  else return d * (dot(u, d) / denom);
}

template<typename T>
inline
SGVec2<T>
interpolate(T tau, const SGVec2<T>& v1, const SGVec2<T>& v2)
{
  SGVec2<T> r;
  r.simd2() = simd4::interpolate(tau, v1.simd2(), v2.simd2());
  return r;
}

#ifndef NDEBUG
template<typename T>
inline
bool
isNaN(const SGVec2<T>& v)
{
  return SGMisc<T>::isNaN(v(0)) || SGMisc<T>::isNaN(v(1));
}
#endif

/// Output to an ostream
template<typename char_type, typename traits_type, typename T>
inline
std::basic_ostream<char_type, traits_type>&
operator<<(std::basic_ostream<char_type, traits_type>& s, const SGVec2<T>& v)
{ return s << "[ " << v(0) << ", " << v(1) << " ]"; }

inline
SGVec2f
toVec2f(const SGVec2d& v)
{ SGVec2f f(v); return f; }

inline
SGVec2d
toVec2d(const SGVec2f& v)
{ SGVec2d d(v); return d; }

#endif