/usr/include/simgear/math/SGVec2.hxx is in libsimgear-dev 1:2018.1.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | // Copyright (C) 2006-2009 Mathias Froehlich - Mathias.Froehlich@web.de
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
#ifndef SGVec2_H
#define SGVec2_H
#include <iosfwd>
#include <simgear/math/SGLimits.hxx>
#include <simgear/math/SGMisc.hxx>
#include <simgear/math/SGMathFwd.hxx>
#include <simgear/math/simd.hxx>
/// 2D Vector Class
template<typename T>
class SGVec2 {
public:
typedef T value_type;
/// Default constructor. Does not initialize at all.
/// If you need them zero initialized, use SGVec2::zeros()
SGVec2(void)
{
/// Initialize with nans in the debug build, that will guarantee to have
/// a fast uninitialized default constructor in the release but shows up
/// uninitialized values in the debug build very fast ...
#ifndef NDEBUG
for (unsigned i = 0; i < 2; ++i)
data()[i] = SGLimits<T>::quiet_NaN();
#endif
}
/// Constructor. Initialize by the given values
SGVec2(T x, T y)
{ _data = simd4_t<T,2>(x, y); }
/// Constructor. Initialize by the content of a plain array,
/// make sure it has at least 2 elements
explicit SGVec2(const T* d)
{ _data = d ? simd4_t<T,2>(d) : simd4_t<T,2>(T(0)); }
template<typename S>
explicit SGVec2(const SGVec2<S>& d)
{ data()[0] = d[0]; data()[1] = d[1]; }
/// Access by index, the index is unchecked
const T& operator()(unsigned i) const
{ return data()[i]; }
/// Access by index, the index is unchecked
T& operator()(unsigned i)
{ return data()[i]; }
/// Access raw data by index, the index is unchecked
const T& operator[](unsigned i) const
{ return data()[i]; }
/// Access raw data by index, the index is unchecked
T& operator[](unsigned i)
{ return data()[i]; }
/// Access the x component
const T& x(void) const
{ return data()[0]; }
/// Access the x component
T& x(void)
{ return data()[0]; }
/// Access the y component
const T& y(void) const
{ return data()[1]; }
/// Access the y component
T& y(void)
{ return data()[1]; }
/// Access raw data
const T (&data(void) const)[2]
{ return _data.ptr(); }
/// Access raw data
T (&data(void))[2]
{ return _data.ptr(); }
const simd4_t<T,2> (&simd2(void) const)
{ return _data; }
/// Readonly raw storage interface
simd4_t<T,2> (&simd2(void))
{ return _data; }
/// Inplace addition
SGVec2& operator+=(const SGVec2& v)
{ _data += v.simd2(); return *this; }
/// Inplace subtraction
SGVec2& operator-=(const SGVec2& v)
{ _data -= v.simd2(); return *this; }
/// Inplace scalar multiplication
template<typename S>
SGVec2& operator*=(S s)
{ _data *= s; return *this; }
/// Inplace scalar multiplication by 1/s
template<typename S>
SGVec2& operator/=(S s)
{ _data*=(1/T(s)); return *this; }
/// Return an all zero vector
static SGVec2 zeros(void)
{ return SGVec2(0, 0); }
/// Return unit vectors
static SGVec2 e1(void)
{ return SGVec2(1, 0); }
static SGVec2 e2(void)
{ return SGVec2(0, 1); }
private:
simd4_t<T,2> _data;
};
/// Unary +, do nothing ...
template<typename T>
inline
const SGVec2<T>&
operator+(const SGVec2<T>& v)
{ return v; }
/// Unary -, do nearly nothing
template<typename T>
inline
SGVec2<T>
operator-(SGVec2<T> v)
{ v *= -1; return v; }
/// Binary +
template<typename T>
inline
SGVec2<T>
operator+(SGVec2<T> v1, const SGVec2<T>& v2)
{ v1.simd2() += v2.simd2(); return v1; }
/// Binary -
template<typename T>
inline
SGVec2<T>
operator-(SGVec2<T> v1, const SGVec2<T>& v2)
{ v1.simd2() -= v2.simd2(); return v1; }
/// Scalar multiplication
template<typename S, typename T>
inline
SGVec2<T>
operator*(S s, SGVec2<T> v)
{ v.simd2() *= s; return v; }
/// Scalar multiplication
template<typename S, typename T>
inline
SGVec2<T>
operator*(SGVec2<T> v, S s)
{ v.simd2() *= s; return v; }
/// multiplication as a multiplicator, that is assume that the first vector
/// represents a 2x2 diagonal matrix with the diagonal elements in the vector.
/// Then the result is the product of that matrix times the second vector.
template<typename T>
inline
SGVec2<T>
mult(SGVec2<T> v1, const SGVec2<T>& v2)
{ v1.simd2() *= v2.simd2(); return v1; }
/// component wise min
template<typename T>
inline
SGVec2<T>
min(SGVec2<T> v1, const SGVec2<T>& v2)
{ v1.simd2() = simd4::min(v1.simd2(), v2.simd2()); return v1; }
template<typename S, typename T>
inline
SGVec2<T>
min(SGVec2<T> v, S s)
{ v.simd2() = simd4::min(v.simd2(), simd4_t<T,2>(s)); return v; }
template<typename S, typename T>
inline
SGVec2<T>
min(S s, SGVec2<T> v)
{ v.sim2() = simd4::min(v.simd2(), simd4_t<T,2>(s)); return v; }
/// component wise max
template<typename T>
inline
SGVec2<T>
max(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ v1 = simd4::max(v1.simd2(), v2.simd2()); return v1; }
template<typename S, typename T>
inline
SGVec2<T>
max(const SGVec2<T>& v, S s)
{ v = simd4::max(v.simd2(), simd4_t<T,2>(s)); return v; }
template<typename S, typename T>
inline
SGVec2<T>
max(S s, const SGVec2<T>& v)
{ v = simd4::max(v.simd2(), simd4_t<T,2>(s)); return v; }
/// Add two vectors taking care of (integer) overflows. The values are limited
/// to the respective minimum and maximum values.
template<class T>
SGVec2<T> addClipOverflow(SGVec2<T> const& lhs, SGVec2<T> const& rhs)
{
return SGVec2<T>(
SGMisc<T>::addClipOverflow(lhs.x(), rhs.x()),
SGMisc<T>::addClipOverflow(lhs.y(), rhs.y())
);
}
/// Scalar dot product
template<typename T>
inline
T
dot(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return simd4::dot(v1.simd2(), v2.simd2()); }
/// The euclidean norm of the vector, that is what most people call length
template<typename T>
inline
T
norm(const SGVec2<T>& v)
{ return simd4::magnitude(v.simd2()); }
/// The euclidean norm of the vector, that is what most people call length
template<typename T>
inline
T
length(const SGVec2<T>& v)
{ return simd4::magnitude(v.simd2()); }
/// The 1-norm of the vector, this one is the fastest length function we
/// can implement on modern cpu's
template<typename T>
inline
T
norm1(SGVec2<T> v)
{ v.simd2() = simd4::abs(v.simd2()); return (v(0)+v(1)); }
/// The inf-norm of the vector
template<typename T>
inline
T
normI(SGVec2<T> v)
{
v.simd2() = simd4::abs(v.simd2());
return SGMisc<T>::max(v(0), v(1));
}
/// The euclidean norm of the vector, that is what most people call length
template<typename T>
inline
SGVec2<T>
normalize(const SGVec2<T>& v)
{
T normv = norm(v);
if (normv <= SGLimits<T>::min())
return SGVec2<T>::zeros();
return (1/normv)*v;
}
/// Return true if exactly the same
template<typename T>
inline
bool
operator==(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return v1(0) == v2(0) && v1(1) == v2(1); }
/// Return true if not exactly the same
template<typename T>
inline
bool
operator!=(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return ! (v1 == v2); }
/// Return true if smaller, good for putting that into a std::map
template<typename T>
inline
bool
operator<(const SGVec2<T>& v1, const SGVec2<T>& v2)
{
if (v1(0) < v2(0)) return true;
else if (v2(0) < v1(0)) return false;
else return (v1(1) < v2(1));
}
template<typename T>
inline
bool
operator<=(const SGVec2<T>& v1, const SGVec2<T>& v2)
{
if (v1(0) < v2(0)) return true;
else if (v2(0) < v1(0)) return false;
else return (v1(1) <= v2(1));
}
template<typename T>
inline
bool
operator>(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return operator<(v2, v1); }
template<typename T>
inline
bool
operator>=(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return operator<=(v2, v1); }
/// Return true if equal to the relative tolerance tol
template<typename T>
inline
bool
equivalent(const SGVec2<T>& v1, const SGVec2<T>& v2, T rtol, T atol)
{ return norm1(v1 - v2) < rtol*(norm1(v1) + norm1(v2)) + atol; }
/// Return true if equal to the relative tolerance tol
template<typename T>
inline
bool
equivalent(const SGVec2<T>& v1, const SGVec2<T>& v2, T rtol)
{ return norm1(v1 - v2) < rtol*(norm1(v1) + norm1(v2)); }
/// Return true if about equal to roundoff of the underlying type
template<typename T>
inline
bool
equivalent(const SGVec2<T>& v1, const SGVec2<T>& v2)
{
T tol = 100*SGLimits<T>::epsilon();
return equivalent(v1, v2, tol, tol);
}
/// The euclidean distance of the two vectors
template<typename T>
inline
T
dist(const SGVec2<T>& v1, const SGVec2<T>& v2)
{ return simd4::magnitude(v1.simd2() - v2.simd2()); }
/// The squared euclidean distance of the two vectors
template<typename T>
inline
T
distSqr(SGVec2<T> v1, const SGVec2<T>& v2)
{ return simd4::magnitude2(v1.simd2() - v2.simd2()); }
// calculate the projection of u along the direction of d.
template<typename T>
inline
SGVec2<T>
projection(const SGVec2<T>& u, const SGVec2<T>& d)
{
T denom = simd4::magnitude2(d.simd2());
T ud = dot(u, d);
if (SGLimits<T>::min() < denom) return u;
else return d * (dot(u, d) / denom);
}
template<typename T>
inline
SGVec2<T>
interpolate(T tau, const SGVec2<T>& v1, const SGVec2<T>& v2)
{
SGVec2<T> r;
r.simd2() = simd4::interpolate(tau, v1.simd2(), v2.simd2());
return r;
}
#ifndef NDEBUG
template<typename T>
inline
bool
isNaN(const SGVec2<T>& v)
{
return SGMisc<T>::isNaN(v(0)) || SGMisc<T>::isNaN(v(1));
}
#endif
/// Output to an ostream
template<typename char_type, typename traits_type, typename T>
inline
std::basic_ostream<char_type, traits_type>&
operator<<(std::basic_ostream<char_type, traits_type>& s, const SGVec2<T>& v)
{ return s << "[ " << v(0) << ", " << v(1) << " ]"; }
inline
SGVec2f
toVec2f(const SGVec2d& v)
{ SGVec2f f(v); return f; }
inline
SGVec2d
toVec2d(const SGVec2f& v)
{ SGVec2d d(v); return d; }
#endif
|