This file is indexed.

/usr/include/simbody/simmath/LinearAlgebra.h is in libsimbody-dev 3.5.4+dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#ifndef SimTK_LINEAR_ALGEBRA_H_
#define SimTK_LINEAR_ALGEBRA_H_

/* -------------------------------------------------------------------------- *
 *                        Simbody(tm): SimTKmath                              *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK biosimulation toolkit originating from           *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody.  *
 *                                                                            *
 * Portions copyright (c) 2006-12 Stanford University and the Authors.        *
 * Authors: Jack Middleton                                                    *
 * Contributors: Michael Sherman                                              *
 *                                                                            *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may    *
 * not use this file except in compliance with the License. You may obtain a  *
 * copy of the License at http://www.apache.org/licenses/LICENSE-2.0.         *
 *                                                                            *
 * Unless required by applicable law or agreed to in writing, software        *
 * distributed under the License is distributed on an "AS IS" BASIS,          *
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   *
 * See the License for the specific language governing permissions and        *
 * limitations under the License.                                             *
 * -------------------------------------------------------------------------- */

/** @file
 * This is the header file that user code should include to pick up the 
 * SimTK Simmath linear algebra tools.
 */


#include "SimTKcommon.h"
#include "simmath/internal/common.h"


namespace SimTK {

//  default for reciprocal of the condition number
// TODO: sherm 080128 I changed this from 0.01 to a more reasonable
// value but it is still wrong because the default should depend
// on the matrix size, something like max(m,n)*eps^(7/8) where
// eps is machine precision for float or double as appropriate.
static const double DefaultRecpCondition = 1e-12;

/**
 * Base class for the various matrix factorizations. 
 */
class SimTK_SIMMATH_EXPORT Factor {
public:

  Factor() {}
  /// creates an factorization of a matrix
  template <class ELT> Factor( Matrix_<ELT> m );
  /// solves a single right hand side using a factorization
  template <class ELT> void solve( const Vector_<ELT>& b, Vector_<ELT>& x ) const;
  /// solves multiple right hand sides using a factorization
  template <class ELT> void solve( const Matrix_<ELT>& b, Matrix_<ELT>& x ) const;
  
}; // class Factor

class FactorLURepBase;

/**
 * Class for performing LU matrix factorizations 
 */
class SimTK_SIMMATH_EXPORT FactorLU: public Factor {
    public:

    ~FactorLU();

    FactorLU();
    FactorLU( const FactorLU& c );
    FactorLU& operator=(const FactorLU& rhs);

    template <class ELT> FactorLU( const Matrix_<ELT>& m );
    /// factors a matrix
    template <class ELT> void factor( const Matrix_<ELT>& m );
    /// solves a single right hand side 
    template <class ELT> void solve( const Vector_<ELT>& b, Vector_<ELT>& x ) const;
    /// solves multiple  right hand sides 
    template <class ELT> void solve( const Matrix_<ELT>& b, Matrix_<ELT>& x ) const;

    /// returns the lower triangle of an LU factorization 
    template <class ELT> void getL( Matrix_<ELT>& l ) const;
    /// returns the upper triangle of an LU factorization 
    template <class ELT> void getU( Matrix_<ELT>& u ) const;
    /// returns the inverse of a matrix using an LU factorization
    template < class ELT > void inverse(  Matrix_<ELT>& m ) const;

    /// returns true if matrix was singular 
    bool isSingular() const;
    /// returns the first diagonal which was found to be singular
    int getSingularIndex() const;


    protected:
    class FactorLURepBase *rep;

}; // class FactorLU


class FactorQTZRepBase;
/**
 * Class to perform a QTZ (linear least squares) factorization
 */
class SimTK_SIMMATH_EXPORT FactorQTZ: public Factor {
    public:

    ~FactorQTZ();

    FactorQTZ();
    FactorQTZ( const FactorQTZ& c );
    FactorQTZ& operator=(const FactorQTZ& rhs);
    /// do QTZ factorization of a matrix
    template <typename ELT> FactorQTZ( const Matrix_<ELT>& m);
    /// do QTZ factorization of a matrix for a given reciprocal condition number
    template <typename ELT> FactorQTZ( const Matrix_<ELT>& m, double rcond );
    /// do QTZ factorization of a matrix for a given reciprocal condition number
    template <typename ELT> FactorQTZ( const Matrix_<ELT>& m, float rcond );
    /// do QTZ factorization of a matrix
    template <typename ELT> void factor( const Matrix_<ELT>& m);
    /// do QTZ factorization of a matrix for a given reciprocal condition number
    template <typename ELT> void factor( const Matrix_<ELT>& m, float rcond );
    /// do QTZ factorization of a matrix for a given reciprocal condition number
    template <typename ELT> void factor( const Matrix_<ELT>& m, double rcond );
    /// solve  for a vector x given a right hand side vector b
    template <typename ELT> void solve( const Vector_<ELT>& b, Vector_<ELT>& x ) const;
    /// solve  for an array of vectors  given multiple  right hand sides  
    template <typename ELT> void solve( const Matrix_<ELT>& b, Matrix_<ELT>& x ) const;

    template < class ELT > void inverse(  Matrix_<ELT>& m ) const;

    /// returns the rank of the matrix
    int getRank() const;
    /// returns the actual reciprocal condition number at this rank
    double getRCondEstimate() const;
//    void setRank(int rank); TBD

    protected:
    class FactorQTZRepBase *rep;
}; // class FactorQTZ
/**
 * Class to compute Eigen values and Eigen vectors of a matrix
 */
class SimTK_SIMMATH_EXPORT Eigen {
    public:

    ~Eigen();

    Eigen();
    Eigen( const Eigen& c );
    Eigen& operator=(const Eigen& rhs);

    /// create a default eigen class
    template <class ELT> Eigen( const Matrix_<ELT>& m );
    /// supply matrix which eigen values will be computed for  
    template <class ELT> void factor( const Matrix_<ELT>& m );
    /// get all the eigen values and eigen vectors of a matrix 
    template <class VAL, class VEC> void getAllEigenValuesAndVectors( Vector_<VAL>& values, Matrix_<VEC>& vectors);
    /// get all the eigen values of a matrix 
    template <class T> void getAllEigenValues( Vector_<T>& values);

    /// get a few eigen values  and eigen vectors of a symmetric matrix which are within a range of indices
    template <class VAL, class VEC> void getFewEigenValuesAndVectors( Vector_<VAL>& values, Matrix_<VEC>& vectors, int ilow, int ihi);
    /// get a few eigen vectors of a symmetric matrix which are within a range of indices
    template <class T> void getFewEigenVectors( Matrix_<T>& vectors, int ilow, int ihi );
    /// get a few eigen values of a symmetric matrix which are within a range of indices
    template <class T> void getFewEigenValues( Vector_<T>& values, int ilow, int ihi );

    /// get a few eigen values  and eigen vectors of a symmetric matrix which are within a range of eigen values
    template <class VAL, class VEC> void getFewEigenValuesAndVectors( Vector_<VAL>& values, Matrix_<VEC>& vectors, typename CNT<VAL>::TReal rlow, typename CNT<VAL>::TReal rhi);
    /// get a few eigen vectors of a symmetric matrix which are within a range of eigen values
    template <class T> void getFewEigenVectors( Matrix_<T>& vectors, typename CNT<T>::TReal rlow, typename CNT<T>::TReal rhi );
    /// get a few eigen values of a symmetric matrix which are within a range of eigen values
    template <class T> void getFewEigenValues( Vector_<T>& values, typename CNT<T>::TReal rlow, typename CNT<T>::TReal rhi );

     
    protected:
    class EigenRepBase *rep;

}; // class Eigen
/**
 * Class to compute a singular value decomposition of a matrix
 */
class SimTK_SIMMATH_EXPORT FactorSVD: public Factor {
    public:

    ~FactorSVD();
    /// default constructor  
    FactorSVD();
    /// copy  constructor  
    FactorSVD( const FactorSVD& c );
    /// copy  assign  
    FactorSVD& operator=(const FactorSVD& rhs);

    /// constructor 
    template < class ELT > FactorSVD( const Matrix_<ELT>& m );
    /// singular value decomposition of a matrix using the specified reciprocal of the condition
    /// number rcond
    template < class ELT > FactorSVD( const Matrix_<ELT>& m, float rcond );
    /// singular value decomposition of a matrix using the specified reciprocal of the condition
    /// number rcond
    template < class ELT > FactorSVD( const Matrix_<ELT>& m, double rcond );
    /// supply the matrix to do a singular value decomposition 
    template < class ELT > void factor( const Matrix_<ELT>& m );
    /// supply the matrix to do a singular value decomposition using the specified 
    /// reciprocal of the condition number rcond
    template < class ELT > void factor( const Matrix_<ELT>& m, float rcond );
    /// supply the matrix to do a singular value decomposition using the specified reciprocal of the condition
    /// reciprocal of the condition number rcond
    template < class ELT > void factor( const Matrix_<ELT>& m, double rcond );

    /// get the singular values and singular vectors of the matrix
    template < class T > void getSingularValuesAndVectors( Vector_<typename CNT<T>::TReal>& values, 
                              Matrix_<T>& leftVectors,  Matrix_<T>& rightVectors );
    /// get just the singular values of the matrix
    template < class T > void getSingularValues( Vector_<T>& values);

    /// get rank of the matrix 
    int getRank();
    /// get inverse of the matrix  using singular value decomposition (sometimes called the pseudo inverse)
    template < class ELT > void inverse(  Matrix_<ELT>& m );
    /// solve for x given a right hand side vector using the singular value decomposition
    template <class ELT> void solve( const Vector_<ELT>& b, Vector_<ELT>& x );
    /// solve for a set of x vectors  given multiple right hand side vectors 
    /// using the singular value decomposition
    template <class ELT> void solve( const Matrix_<ELT>& b, Matrix_<ELT>& x );

    protected:
    class FactorSVDRepBase *rep;

}; // class FactorSVD

} // namespace SimTK 

#endif //SimTK_LINEAR_ALGEBRA_H_