/usr/include/simbody/SimTKcommon/Testing.h is in libsimbody-dev 3.5.4+dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 | #ifndef SimTK_SimTKCOMMON_TESTING_H_
#define SimTK_SimTKCOMMON_TESTING_H_
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKcommon *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2009-14 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKcommon/basics.h"
#include "SimTKcommon/Simmatrix.h"
#include "SimTKcommon/internal/Random.h"
#include "SimTKcommon/internal/Timing.h"
#include <cmath>
#include <algorithm>
#include <iostream>
/** @file
* This file defines a SimTK::Test class and some related macros which
* provide functionality useful in regression tests.
*/
namespace SimTK {
/**@defgroup RegressionTesting SimTK Regression Testing
*
* SimTK defines some utilities to facilitate the creation of regression
* tests for SimTK facilities. These utilities consist of a SimTK::Test
* class and related support macros.
*
* Features include:
* - uniform, readable output including execution times
* - identical comparison tests for all numerical types, scalar and composite
* - careful treatment of numerical tolerances using relative and absolute
* comparisons, with provision for size-dependent, reduced accuracy
* expectations for matrix operations
* - default tolerance varies with precision (caller can override)
* - convenient generation of random test data
* - convenient testing of required argument checking (i.e., test
* fails unless an exception is thrown)
*
* The Testing.h header file is
* <em>not</em> automatically included with SimTKcommon.h; you have to
* ask for it explicilty. Here's how you use this facility:
* <pre>
* \#include "SimTKcommon/Testing.h"
* void myFirstSubtest() {...}
* void myNextSubtest() {...}
* int main() {
* SimTK_START_TEST("OverallTestName");
* SimTK_SUBTEST(myFirstSubtest);
* SimTK_SUBTEST(myNextSubtest);
* SimTK_END_TEST();
* }
* </pre>
* The arguments to SimTK_SUBTEST are function names and will be
* called with "()" appended. If your subtest functions have arguments,
* use SimTK_SUBTEST1(name,arg) or SimTK_SUBTEST2(name,arg1,arg2) which
* will call name(arg) or name(arg1,arg2) as appropriate.
*
* This will result in nice output including execution times for
* the overall test and the individual subtests, and arrange for
* any exceptions raised in the tests to be caught, properly reported,
* and cause a non-zero return from main(). If everything runs
* successfully, main() will return 0. Here is an example of the
* output produced:
* <pre>
* Starting test TestScalar ...
* testIsNaN ... done. testIsNaN time: 0ms.
* testIsInf ... done. testIsInf time: 0ms.
* testIsFinite ... done. testIsFinite time: 0ms.
* testSignBit ... done. testSignBit time: 0ms.
* testSign ... done. testSign time: 0ms.
* testSquareAndCube ... done. testSquareAndCube time: 0ms.
* Done. TestScalar time: 15ms.
* </pre>
* (Admittedly the timings aren't much use in that example!)
*
* Within your subtests, several useful macros and static functions
* are available. By using these macros, the resulting message will
* include the actual line number at which the test failure occurred.
* <pre>
* SimTK_TEST(cond) -- this is like assert(cond)
* SimTK_TEST_FAILED("message") -- like assert(!"message")
*
* SimTK_TEST_EQ(a,b) -- equal to within a default tolerance
* SimTK_TEST_NOTEQ(a,b) -- not equal to within a default tolerance
*
* SimTK_TEST_EQ_SIZE(a,b,n) -- equal to within n * default tolerance
* SimTK_TEST_NOTEQ_SIZE(a,b,n) -- not equal to within n * default tolerance
*
* SimTK_TEST_EQ_TOL(a,b,tol) -- same as above with specified tolerance
* SimTK_TEST_NOTEQ_TOL(a,b,tol)
*
* SimTK_TEST_MUST_THROW(statement) -- we expect the statement to throw some exception
* SimTK_TEST_MUST_THROW_EXC(statement, exception) -- we expect a particular exception type
* SimTK_TEST_MUST_THROW_DEBUG(statement) -- same as above but only checked in Debug builds
* SimTK_TEST_MUST_THROW_EXC_DEBUG(statement, exception) -- ditto
* </pre>
* The SimTK_TEST_EQ macros test scalar and composite numerical values for
* equality to within a numerical tolerance, using both relative
* and absolute tolerances. The default is the value of SignificantReal
* for the underlying numerical type. For composite types the equality test is done
* elementwise; that is, we apply it strictly to each pair of elements not
* to an overall norm.
*
* The SimTK_TEST_EQ_SIZE macros allows you to specify a multiple of default
* tolerance to be used. This is necessary for most Matrix operations since
* attainable accuracy falls off with the size of the matrix. Typically, if
* the smallest dimension of the Matrix is n, then the tolerance you should allow
* is n*scalarTol where scalarTol is the default tolerance for a scalar
* operation. Note that you still need to specify size when comparing
* Vector or scalar values if those values were produced using a matrix
* computation.
*
* The SimTK_TEST_EQ_TOL macros take a user-specified tolerance value for
* the elementwise tests, overriding the default.
*
* The SimTK::Test class has a number of static methods that are useful
* in tests. Currently these are all for generating numerical objects
* filled with random numbers (all uniform between -1 and 1). These are:
* <pre>
* randReal() randFloat() randDouble()
* randComplex() randConjugate()
* randVec<M>() randRow<N>() randMat<M,N>() randSymMat<N>()
* randVector(m) randMatrix(m,n)
* randVec3() randMat33()
* randSpatialVec() randSpatialMat()
* randRotation() randTransform()
* </pre>
* These are invoked Test::randReal() etc.
*
* @{
*/
/// This is the main class to support testing. Objects of this type are
/// created by the SimTK_START_TEST macro; don't allocate them directly.
/// The class name appears directly in tests only for access to its
/// static members like Test::randMatrix().
class Test {
public:
class Subtest;
Test(const std::string& name)
: startCpuTime(SimTK::cpuTime()),
startRealTime(SimTK::realTime()),
testName(name)
{
std::clog << "Starting test " << testName << " ...\n";
}
~Test() {
const double finalRealTime=SimTK::realTime();
const double finalCpuTime=SimTK::cpuTime();
std::ostringstream fmt;
fmt << std::fixed << std::setprecision(1);
fmt << "\n" << testName << " done."
<< " real/CPU ms: " << (finalRealTime-startRealTime)*1000
<< " / " << (finalCpuTime-startCpuTime)*1000 <<std::endl;
std::clog << fmt.str();
}
template <class T>
static double defTol() {return (double)NTraits<typename CNT<T>::Precision>::getSignificant();}
// For dissimilar types, the default tolerance is the narrowest of the two.
template <class T1, class T2>
static double defTol2() {return std::max(defTol<T1>(), defTol<T2>());}
// Scale by the magnitude of the quantities being compared, so that we don't
// ask for unreasonable precision. For magnitudes near zero, we'll be satisfied
// if both are very small without demanding that they must also be relatively
// close. That is, we use a relative tolerance for big numbers and an absolute
// tolerance for small ones.
static bool numericallyEqual(float v1, float v2, int n, double tol=defTol<float>()) {
const float scale = n*std::max(std::max(std::abs(v1), std::abs(v2)), 1.0f);
return std::abs(v1-v2) < scale*(float)tol;
}
static bool numericallyEqual(double v1, double v2, int n, double tol=defTol<double>()) {
const double scale = n*std::max(std::max(std::abs(v1), std::abs(v2)), 1.0);
return std::abs(v1-v2) < scale*(double)tol;
}
static bool numericallyEqual(long double v1, long double v2, int n, double tol=defTol<long double>()) {
const long double scale = n*std::max(std::max(std::abs(v1), std::abs(v2)), 1.0l);
return std::abs(v1-v2) < scale*(long double)tol;
}
// For integers we ignore tolerance.
static bool numericallyEqual(int i1, int i2, int n, double tol=0) {return i1==i2;}
static bool numericallyEqual(unsigned u1, unsigned u2, int n, double tol=0) {return u1==u2;}
// Mixed floating types use default tolerance for the narrower type.
static bool numericallyEqual(float v1, double v2, int n, double tol=defTol<float>())
{ return numericallyEqual((double)v1, v2, n, tol); }
static bool numericallyEqual(double v1, float v2, int n, double tol=defTol<float>())
{ return numericallyEqual(v1, (double)v2, n, tol); }
static bool numericallyEqual(float v1, long double v2, int n, double tol=defTol<float>())
{ return numericallyEqual((long double)v1, v2, n, tol); }
static bool numericallyEqual(long double v1, float v2, int n, double tol=defTol<float>())
{ return numericallyEqual(v1, (long double)v2, n, tol); }
static bool numericallyEqual(double v1, long double v2, int n, double tol=defTol<double>())
{ return numericallyEqual((long double)v1, v2, n, tol); }
static bool numericallyEqual(long double v1, double v2, int n, double tol=defTol<double>())
{ return numericallyEqual(v1, (long double)v2, n, tol); }
// Mixed int/floating just upgrades int to floating type.
static bool numericallyEqual(int i1, float f2, int n, double tol=defTol<float>())
{ return numericallyEqual((float)i1,f2,n,tol); }
static bool numericallyEqual(float f1, int i2, int n, double tol=defTol<float>())
{ return numericallyEqual(f1,(float)i2,n,tol); }
static bool numericallyEqual(unsigned i1, float f2, int n, double tol=defTol<float>())
{ return numericallyEqual((float)i1,f2,n,tol); }
static bool numericallyEqual(float f1, unsigned i2, int n, double tol=defTol<float>())
{ return numericallyEqual(f1,(float)i2,n,tol); }
static bool numericallyEqual(int i1, double f2, int n, double tol=defTol<double>())
{ return numericallyEqual((double)i1,f2,n,tol); }
static bool numericallyEqual(double f1, int i2, int n, double tol=defTol<double>())
{ return numericallyEqual(f1,(double)i2,n,tol); }
static bool numericallyEqual(unsigned i1, double f2, int n, double tol=defTol<double>())
{ return numericallyEqual((double)i1,f2,n,tol); }
static bool numericallyEqual(double f1, unsigned i2, int n, double tol=defTol<double>())
{ return numericallyEqual(f1,(double)i2,n,tol); }
static bool numericallyEqual(int i1, long double f2, int n, double tol=defTol<long double>())
{ return numericallyEqual((long double)i1,f2,n,tol); }
static bool numericallyEqual(long double f1, int i2, int n, double tol=defTol<long double>())
{ return numericallyEqual(f1,(long double)i2,n,tol); }
static bool numericallyEqual(unsigned i1, long double f2, int n, double tol=defTol<long double>())
{ return numericallyEqual((long double)i1,f2,n,tol); }
static bool numericallyEqual(long double f1, unsigned i2, int n, double tol=defTol<long double>())
{ return numericallyEqual(f1,(long double)i2,n,tol); }
template <class P>
static bool numericallyEqual(const std::complex<P>& v1, const std::complex<P>& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(v1.real(), v2.real(), n, tol)
&& numericallyEqual(v1.imag(), v2.imag(), n, tol);
}
template <class P>
static bool numericallyEqual(const conjugate<P>& v1, const conjugate<P>& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(v1.real(), v2.real(), n, tol)
&& numericallyEqual(v1.imag(), v2.imag(), n, tol);
}
template <class P>
static bool numericallyEqual(const std::complex<P>& v1, const conjugate<P>& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(v1.real(), v2.real(), n, tol)
&& numericallyEqual(v1.imag(), v2.imag(), n, tol);
}
template <class P>
static bool numericallyEqual(const conjugate<P>& v1, const std::complex<P>& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(v1.real(), v2.real(), n, tol)
&& numericallyEqual(v1.imag(), v2.imag(), n, tol);
}
template <class P>
static bool numericallyEqual(const negator<P>& v1, const negator<P>& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(-v1, -v2, n, tol); // P, P
}
template <class P>
static bool numericallyEqual(const P& v1, const negator<P>& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(-v1, -v2, n, tol); // P, P
}
template <class P>
static bool numericallyEqual(const negator<P>& v1, const P& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(-v1, -v2, n, tol); // P, P
}
template <class P>
static bool numericallyEqual(const negator<std::complex<P> >& v1, const conjugate<P>& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(-v1, -v2, n, tol); // complex, conjugate
}
template <class P>
static bool numericallyEqual(const negator<conjugate<P> >& v1, const std::complex<P>& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(-v1, -v2, n, tol); // conjugate, complex
}
template <class P>
static bool numericallyEqual(const std::complex<P>& v1, const negator<conjugate<P> >& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(-v1, -v2, n, tol); // complex, conjugate
}
template <class P>
static bool numericallyEqual(const conjugate<P>& v1, const negator<std::complex<P> >& v2, int n, double tol=defTol<P>()) {
return numericallyEqual(-v1, -v2, n, tol); // conjugate, complex
}
template <int M, class E1, int S1, class E2, int S2>
static bool numericallyEqual(const Vec<M,E1,S1>& v1, const Vec<M,E2,S2>& v2, int n, double tol=(defTol2<E1,E2>())) {
for (int i=0; i<M; ++i) if (!numericallyEqual(v1[i],v2[i], n, tol)) return false;
return true;
}
template <int N, class E1, int S1, class E2, int S2>
static bool numericallyEqual(const Row<N,E1,S1>& v1, const Row<N,E2,S2>& v2, int n, double tol=(defTol2<E1,E2>())) {
for (int j=0; j<N; ++j) if (!numericallyEqual(v1[j],v2[j], n, tol)) return false;
return true;
}
template <int M, int N, class E1, int CS1, int RS1, class E2, int CS2, int RS2>
static bool numericallyEqual(const Mat<M,N,E1,CS1,RS1>& v1, const Mat<M,N,E2,CS2,RS2>& v2, int n, double tol=(defTol2<E1,E2>())) {
for (int j=0; j<N; ++j) if (!numericallyEqual(v1(j),v2(j), n, tol)) return false;
return true;
}
template <int N, class E1, int S1, class E2, int S2>
static bool numericallyEqual(const SymMat<N,E1,S1>& v1, const SymMat<N,E2,S2>& v2, int n, double tol=(defTol2<E1,E2>())) {
return numericallyEqual(v1.getAsVec(), v2.getAsVec(), n, tol);
}
template <class E1, class E2>
static bool numericallyEqual(const VectorView_<E1>& v1, const VectorView_<E2>& v2, int n, double tol=(defTol2<E1,E2>())) {
if (v1.size() != v2.size()) return false;
for (int i=0; i < v1.size(); ++i)
if (!numericallyEqual(v1[i], v2[i], n, tol)) return false;
return true;
}
template <class E1, class E2>
static bool numericallyEqual(const Vector_<E1>& v1, const Vector_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const VectorView_<E1>&)v1, (const VectorView_<E2>&)v2, n, tol); }
template <class E1, class E2>
static bool numericallyEqual(const Vector_<E1>& v1, const VectorView_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const VectorView_<E1>&)v1, (const VectorView_<E2>&)v2, n, tol); }
template <class E1, class E2>
static bool numericallyEqual(const VectorView_<E1>& v1, const Vector_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const VectorView_<E1>&)v1, (const VectorView_<E2>&)v2, n, tol); }
template <class E1, class E2>
static bool numericallyEqual(const RowVectorView_<E1>& v1, const RowVectorView_<E2>& v2, int n, double tol=(defTol2<E1,E2>())) {
if (v1.size() != v2.size()) return false;
for (int i=0; i < v1.size(); ++i)
if (!numericallyEqual(v1[i], v2[i], n, tol)) return false;
return true;
}
template <class E1, class E2>
static bool numericallyEqual(const RowVector_<E1>& v1, const RowVector_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const RowVectorView_<E1>&)v1, (const RowVectorView_<E2>&)v2, n, tol); }
template <class E1, class E2>
static bool numericallyEqual(const RowVector_<E1>& v1, const RowVectorView_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const RowVectorView_<E1>&)v1, (const RowVectorView_<E2>&)v2, n, tol); }
template <class E1, class E2>
static bool numericallyEqual(const RowVectorView_<E1>& v1, const RowVector_<E2>& v2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const RowVectorView_<E1>&)v1, (const RowVectorView_<E2>&)v2, n, tol); }
template <class E1, class E2>
static bool numericallyEqual(const MatrixView_<E1>& v1, const MatrixView_<E2>& v2, int n, double tol=(defTol2<E1,E2>())) {
if (v1.nrow() != v2.nrow() || v1.ncol() != v2.ncol()) return false;
for (int j=0; j < v1.ncol(); ++j)
if (!numericallyEqual(v1(j), v2(j), n, tol)) return false;
return true;
}
template <class E1, class E2>
static bool numericallyEqual(const Matrix_<E1>& m1, const Matrix_<E2>& m2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const MatrixView_<E1>&)m1, (const MatrixView_<E2>&)m2, n, tol); }
template <class E1, class E2>
static bool numericallyEqual(const Matrix_<E1>& m1, const MatrixView_<E2>& m2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const MatrixView_<E1>&)m1, (const MatrixView_<E2>&)m2, n, tol); }
template <class E1, class E2>
static bool numericallyEqual(const MatrixView_<E1>& m1, const Matrix_<E2>& m2, int n, double tol=(defTol2<E1,E2>()))
{ return numericallyEqual((const MatrixView_<E1>&)m1, (const MatrixView_<E2>&)m2, n, tol); }
template <class P>
static bool numericallyEqual(const Rotation_<P>& R1, const Rotation_<P>& R2, int n, double tol=defTol<P>()) {
return R1.isSameRotationToWithinAngle(R2, (Real)(n*tol));
}
template <class P>
static bool numericallyEqual(const Transform_<P>& T1, const Transform_<P>& T2, int n, double tol=defTol<P>()) {
return numericallyEqual(T1.R(), T2.R(), n, tol)
&& numericallyEqual(T1.p(), T2.p(), n, tol);
}
template <class P>
static bool numericallyEqual(const UnitInertia_<P>& G1, const UnitInertia_<P>& G2, int n, double tol=defTol<P>()) {
return numericallyEqual(G1.asSymMat33(),G2.asSymMat33(), n, tol);
}
template <class P>
static bool numericallyEqual(const Inertia_<P>& I1, const Inertia_<P>& I2, int n, double tol=defTol<P>()) {
return numericallyEqual(I1.asSymMat33(),I2.asSymMat33(), n, tol);
}
// Random numbers
static Real randReal() {
static Random::Uniform rand(-1,1);
return rand.getValue();
}
static Complex randComplex() {return Complex(randReal(),randReal());}
static Conjugate randConjugate() {return Conjugate(randReal(),randReal());}
static float randFloat() {return (float)randReal();}
static double randDouble() {return (double)randReal();}
template <int M> static Vec<M> randVec()
{ Vec<M> v; for (int i=0; i<M; ++i) v[i]=randReal(); return v;}
template <int N> static Row<N> randRow() {return ~randVec<N>();}
template <int M, int N> static Mat<M,N> randMat()
{ Mat<M,N> m; for (int j=0; j<N; ++j) m(j)=randVec<M>(); return m;}
template <int N> static SymMat<N> randSymMat()
{ SymMat<N> s; s.updAsVec() = randVec<N*(N+1)/2>(); return s; }
static Vector randVector(int m)
{ Vector v(m); for (int i=0; i<m; ++i) v[i]=randReal(); return v;}
static Matrix randMatrix(int m, int n)
{ Matrix M(m,n); for (int j=0; j<n; ++j) M(j)=randVector(m); return M;}
static Vec3 randVec3() {return randVec<3>();}
static Mat33 randMat33() {return randMat<3,3>();}
static SymMat33 randSymMat33() {return randSymMat<3>();}
static SpatialVec randSpatialVec() {
return SpatialVec(randVec3(), randVec3());
}
static SpatialMat randSpatialMat() {
return SpatialMat(randMat33(), randMat33(),
randMat33(), randMat33());
}
static Rotation randRotation() {
// Generate random angle and random axis to rotate around.
return Rotation((Pi/2)*randReal(), randVec3());
}
static Transform randTransform() {
return Transform(randRotation(), randVec3());
}
private:
const double startCpuTime;
const double startRealTime;
std::string testName;
};
/// Internal utility class for generating test messages for subtests.
class Test::Subtest {
public:
Subtest(const std::string& name)
: startCpuTime(SimTK::cpuTime()),
startRealTime(SimTK::realTime()),
subtestName(name)
{
std::clog << " " << subtestName << " ...\n" << std::flush;
}
~Subtest() {
const double finalRealTime=SimTK::realTime();
const double finalCpuTime=SimTK::cpuTime();
std::ostringstream fmt;
fmt << std::fixed << std::setprecision(1);
fmt << " " << subtestName << " done."
<< " real/CPU ms: " << (finalRealTime-startRealTime)*1000
<< " / " << (finalCpuTime-startCpuTime)*1000 <<std::endl;
std::clog << fmt.str();
}
private:
const double startCpuTime;
const double startRealTime;
std::string subtestName;
};
} // namespace SimTK
/// Invoke this macro before anything else in your test's main().
#define SimTK_START_TEST(testName) \
SimTK::Test simtk_test_(testName); \
try {
/// Invoke this macro as the last thing in your test's main().
#define SimTK_END_TEST() \
} catch(const std::exception& e) { \
std::cerr << "Test failed due to exception: " \
<< e.what() << std::endl; \
return 1; \
} catch(...) { \
std::cerr << "Test failed due to unrecognized exception.\n"; \
return 1; \
} \
return 0;
/// Invoke a subtest in the form of a no-argument function, arranging for some
/// friendly output and timing information.
#define SimTK_SUBTEST(testFunction) \
do {SimTK::Test::Subtest sub(#testFunction); (testFunction)();} while(false)
/// Invoke a subtest in the form of a 1-argument function, arranging for some
/// friendly output and timing information.
#define SimTK_SUBTEST1(testFunction,arg1) \
do {SimTK::Test::Subtest sub(#testFunction); (testFunction)(arg1);} while(false)
/// Invoke a subtest in the form of a 2-argument function, arranging for some
/// friendly output and timing information.
#define SimTK_SUBTEST2(testFunction,arg1,arg2) \
do {SimTK::Test::Subtest sub(#testFunction); (testFunction)(arg1,arg2);} while(false)
/// Invoke a subtest in the form of a 3-argument function, arranging for some
/// friendly output and timing information.
#define SimTK_SUBTEST3(testFunction,arg1,arg2,arg3) \
do {SimTK::Test::Subtest sub(#testFunction); (testFunction)(arg1,arg2,arg3);} while(false)
/// Invoke a subtest in the form of a 4-argument function, arranging for some
/// friendly output and timing information.
#define SimTK_SUBTEST4(testFunction,arg1,arg2,arg3,arg4) \
do {SimTK::Test::Subtest sub(#testFunction); (testFunction)(arg1,arg2,arg3,arg4);} while(false)
/// Test that some condition holds and complain if it doesn't.
#define SimTK_TEST(cond) {SimTK_ASSERT_ALWAYS((cond), "Test condition failed.");}
/// Call this if you have determined that a test case has failed and just need
/// to report it and die. Pass the message as a string in quotes.
#define SimTK_TEST_FAILED(msg) {SimTK_ASSERT_ALWAYS(!"Test case failed.", msg);}
/// Call this if you have determined that a test case has failed and just need
/// to report it and die. The message is a printf format string in quotes; here
/// with one argument expected.
#define SimTK_TEST_FAILED1(fmt,a1) {SimTK_ASSERT1_ALWAYS(!"Test case failed.",fmt,a1);}
/// Call this if you have determined that a test case has failed and just need
/// to report it and die. The message is a printf format string in quotes; here
/// with two arguments expected.
#define SimTK_TEST_FAILED2(fmt,a1,a2) {SimTK_ASSERT2_ALWAYS(!"Test case failed.",fmt,a1,a2);}
/// Test that two numerical values are equal to within a reasonable numerical
/// error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the test is performed elementwise.
#define SimTK_TEST_EQ(v1,v2) \
{SimTK_ASSERT_ALWAYS(SimTK::Test::numericallyEqual((v1),(v2),1), \
"Test values should have been numerically equivalent at default tolerance.");}
/// Test that two numerical values are equal to within a specified multiple of the
/// default error tolerance.
#define SimTK_TEST_EQ_SIZE(v1,v2,n) \
{SimTK_ASSERT1_ALWAYS(SimTK::Test::numericallyEqual((v1),(v2),(n)), \
"Test values should have been numerically equivalent at size=%d times default tolerance.",(n));}
/// Test that two numerical values are equal to within a specified numerical
/// error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the test is performed elementwise.
#define SimTK_TEST_EQ_TOL(v1,v2,tol) \
{SimTK_ASSERT1_ALWAYS(SimTK::Test::numericallyEqual((v1),(v2),1,(tol)), \
"Test values should have been numerically equivalent at tolerance=%g.",(tol));}
/// Test that two numerical values are NOT equal to within a reasonable numerical
/// error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the equality test is performed elementwise.
#define SimTK_TEST_NOTEQ(v1,v2) \
{SimTK_ASSERT_ALWAYS(!SimTK::Test::numericallyEqual((v1),(v2),1), \
"Test values should NOT have been numerically equivalent (at default tolerance).");}
/// Test that two numerical values are NOT equal to within a specified multiple of
/// the default error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the equality test is performed elementwise.
#define SimTK_TEST_NOTEQ_SIZE(v1,v2,n) \
{SimTK_ASSERT1_ALWAYS(!SimTK::Test::numericallyEqual((v1),(v2),(n)), \
"Test values should NOT have been numerically equivalent at size=%d times default tolerance.",(n));}
/// Test that two numerical values are NOT equal to within a specified numerical
/// error tolerance, using a relative and absolute error tolerance. In the
/// case of composite types, the equality test is performed elementwise.
#define SimTK_TEST_NOTEQ_TOL(v1,v2,tol) \
{SimTK_ASSERT1_ALWAYS(!SimTK::Test::numericallyEqual((v1),(v2),1,(tol)), \
"Test values should NOT have been numerically equivalent at tolerance=%g.",(tol));}
/// Test that the supplied statement throws an std::exception of some kind.
#define SimTK_TEST_MUST_THROW(stmt) \
do {int threw=0; try {stmt;} \
catch(const std::exception&){threw=1;} \
catch(...){threw=2;} \
if (threw==0) SimTK_TEST_FAILED1("Expected statement\n----\n%s\n----\n to throw an exception but it did not.",#stmt); \
if (threw==2) SimTK_TEST_FAILED1("Expected statement\n%s\n to throw an std::exception but it threw something else.",#stmt); \
}while(false)
/// Test that the supplied statement throws a particular exception.
#define SimTK_TEST_MUST_THROW_EXC(stmt,exc) \
do {int threw=0; try {stmt;} \
catch(const exc&){threw=1;} \
catch(...){threw=2;} \
if (threw==0) SimTK_TEST_FAILED1("Expected statement\n----\n%s\n----\n to throw an exception but it did not.",#stmt); \
if (threw==2) SimTK_TEST_FAILED2("Expected statement\n----\n%s\n----\n to throw exception type %s but it threw something else.",#stmt,#exc); \
}while(false)
/// Allow the supplied statement to throw any std::exception without failing.
#define SimTK_TEST_MAY_THROW(stmt) \
do {int threw=0; try {stmt;} \
catch(const std::exception&){threw=1;} \
catch(...){threw=2;} \
if (threw==2) SimTK_TEST_FAILED1("Expected statement\n%s\n to throw an std::exception but it threw something else.",#stmt); \
}while(false)
/// Allow the supplied statement to throw a particular exception without failing.
#define SimTK_TEST_MAY_THROW_EXC(stmt,exc) \
do {int threw=0; try {stmt;} \
catch(const exc&){threw=1;} \
catch(...){threw=2;} \
if (threw==2) SimTK_TEST_FAILED2("Expected statement\n----\n%s\n----\n to throw exception type %s but it threw something else.",#stmt,#exc); \
}while(false)
// When we're only required to throw in Debug, we have to suppress the
// test case altogether in Release because it may cause damage.
#if defined(NDEBUG)
/// Include a bad statement when in Debug and insist that it get caught,
/// but don't include the statement at all in Release.
#define SimTK_TEST_MUST_THROW_DEBUG(stmt)
/// Include a bad statement when in Debug and insist that it get caught,
/// but don't include the statement at all in Release.
#define SimTK_TEST_MUST_THROW_EXC_DEBUG(stmt,exc)
#else
/// Include a bad statement when in Debug and insist that it get caught,
/// but don't include the statement at all in Release.
#define SimTK_TEST_MUST_THROW_DEBUG(stmt) SimTK_TEST_MUST_THROW(stmt)
/// Include a bad statement when in Debug and insist that it get caught,
/// but don't include the statement at all in Release.
#define SimTK_TEST_MUST_THROW_EXC_DEBUG(stmt,exc) \
SimTK_TEST_MUST_THROW_EXC(stmt,exc)
#endif
// End of Regression testing group.
/// @}
#endif // SimTK_SimTKCOMMON_TESTING_H_
|