This file is indexed.

/usr/share/libsigrokdecode/decoders/swd/pd.py is in libsigrokdecode4 0.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Angus Gratton <gus@projectgus.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##

import sigrokdecode as srd
import re

'''
OUTPUT_PYTHON format:

Packet:
[<ptype>, <pdata>]

<ptype>:
 - 'AP_READ' (AP read)
 - 'DP_READ' (DP read)
 - 'AP_WRITE' (AP write)
 - 'DP_WRITE' (DP write)
 - 'LINE_RESET' (line reset sequence)

<pdata>:
  - tuple of address, ack state, data for the given sequence
'''

swd_states = [
    'IDLE', # Idle/unknown
    'REQUEST', # Request phase (first 8 bits)
    'ACK', # Ack phase (next 3 bits)
    'READ', # Reading phase (next 32 bits for reads)
    'WRITE', # Writing phase (next 32 bits for write)
    'DPARITY', # Data parity phase
]

# Regexes for matching SWD data out of bitstring ('1' / '0' characters) format
RE_SWDSWITCH = re.compile(bin(0xE79E)[:1:-1] + '$')
RE_SWDREQ = re.compile(r'1(?P<apdp>.)(?P<rw>.)(?P<addr>..)(?P<parity>.)01$')
RE_IDLE = re.compile('0' * 50 + '$')

# Sample edges
RISING = 1
FALLING = 0

ADDR_DP_SELECT = 0x8
ADDR_DP_CTRLSTAT = 0x4

BIT_SELECT_CTRLSEL = 1
BIT_CTRLSTAT_ORUNDETECT = 1

ANNOTATIONS = ['reset', 'enable', 'read', 'write', 'ack', 'data', 'parity']

class Decoder(srd.Decoder):
    api_version = 3
    id = 'swd'
    name = 'SWD'
    longname = 'Serial Wire Debug'
    desc = 'Two-wire protocol for debug access to ARM CPUs.'
    license = 'gplv2+'
    inputs = ['logic']
    outputs = ['swd']
    channels = (
        {'id': 'swclk', 'name': 'SWCLK', 'desc': 'Master clock'},
        {'id': 'swdio', 'name': 'SWDIO', 'desc': 'Data input/output'},
    )
    options = (
        {'id': 'strict_start',
         'desc': 'Wait for a line reset before starting to decode',
         'default': 'no', 'values': ('yes', 'no')},
    )
    annotations = (
        ('reset', 'RESET'),
        ('enable', 'ENABLE'),
        ('read', 'READ'),
        ('write', 'WRITE'),
        ('ack', 'ACK'),
        ('data', 'DATA'),
        ('parity', 'PARITY'),
    )

    def __init__(self):
        # SWD data/clock state
        self.state = 'UNKNOWN'
        self.sample_edge = RISING
        self.ack = None # Ack state of the current phase
        self.ss_req = 0 # Start sample of current req
        self.turnaround = 0 # Number of turnaround edges to ignore before continuing
        self.bits = '' # Bits from SWDIO are accumulated here, matched against expected sequences
        self.samplenums = [] # Sample numbers that correspond to the samples in self.bits
        self.linereset_count = 0

        # SWD debug port state
        self.data = None
        self.addr = None
        self.rw = None # Are we inside an SWD read or a write?
        self.ctrlsel = 0 # 'ctrlsel' is bit 0 in the SELECT register.
        self.orundetect = 0 # 'orundetect' is bit 0 in the CTRLSTAT register.

    def start(self):
        self.out_ann = self.register(srd.OUTPUT_ANN)
        self.out_python = self.register(srd.OUTPUT_PYTHON)
        if self.options['strict_start'] == 'no':
            self.state = 'REQ' # No need to wait for a LINE RESET.

    def putx(self, ann, length, data):
        '''Output annotated data.'''
        ann = ANNOTATIONS.index(ann)
        try:
            ss = self.samplenums[-length]
        except IndexError:
            ss = self.samplenums[0]
        if self.state == 'REQ':
            self.ss_req = ss
        es = self.samplenum
        self.put(ss, es, self.out_ann, [ann, [data]])

    def putp(self, ptype, pdata):
        self.put(self.ss_req, self.samplenum, self.out_python, [ptype, pdata])

    def put_python_data(self):
        '''Emit Python data item based on current SWD packet contents.'''
        ptype = {
            ('AP', 'R'): 'AP_READ',
            ('AP', 'W'): 'AP_WRITE',
            ('DP', 'R'): 'DP_READ',
            ('DP', 'W'): 'DP_WRITE',
        }[(self.apdp, self.rw)]
        self.putp(ptype, (self.addr, self.data, self.ack))

    def decode(self):
        while True:
            # Wait for any clock edge.
            clk, dio = self.wait({0: 'e'})

            # Count rising edges with DIO held high,
            # as a line reset (50+ high edges) can happen from any state.
            if clk == RISING:
                if dio == 1:
                    self.linereset_count += 1
                else:
                    if self.linereset_count >= 50:
                        self.putx('reset', self.linereset_count, 'LINERESET')
                        self.putp('LINE_RESET', None)
                        self.reset_state()
                    self.linereset_count = 0

            # Otherwise, we only care about either rising or falling edges
            # (depending on sample_edge, set according to current state).
            if clk != self.sample_edge:
                continue

            # Turnaround bits get skipped.
            if self.turnaround > 0:
                self.turnaround -= 1
                continue

            self.bits += str(dio)
            self.samplenums.append(self.samplenum)
            {
                'UNKNOWN': self.handle_unknown_edge,
                'REQ': self.handle_req_edge,
                'ACK': self.handle_ack_edge,
                'DATA': self.handle_data_edge,
                'DPARITY': self.handle_dparity_edge,
            }[self.state]()

    def next_state(self):
        '''Step to the next SWD state, reset internal counters accordingly.'''
        self.bits = ''
        self.samplenums = []
        self.linereset_count = 0
        if self.state == 'UNKNOWN':
            self.state = 'REQ'
            self.sample_edge = RISING
            self.turnaround = 0
        elif self.state == 'REQ':
            self.state = 'ACK'
            self.sample_edge = FALLING
            self.turnaround = 1
        elif self.state == 'ACK':
            self.state = 'DATA'
            self.sample_edge = RISING if self.rw == 'W' else FALLING
            self.turnaround = 0 if self.rw == 'R' else 2
        elif self.state == 'DATA':
            self.state = 'DPARITY'
        elif self.state == 'DPARITY':
            self.put_python_data()
            self.state = 'REQ'
            self.sample_edge = RISING
            self.turnaround = 1 if self.rw == 'R' else 0

    def reset_state(self):
        '''Line reset (or equivalent), wait for a new pending SWD request.'''
        if self.state != 'REQ': # Emit a Python data item.
            self.put_python_data()
        # Clear state.
        self.bits = ''
        self.samplenums = []
        self.linereset_count = 0
        self.turnaround = 0
        self.sample_edge = RISING
        self.data = ''
        self.ack = None
        self.state = 'REQ'

    def handle_unknown_edge(self):
        '''
        Clock edge in the UNKNOWN state.
        In the unknown state, clock edges get ignored until we see a line
        reset (which is detected in the decode method, not here.)
        '''
        pass

    def handle_req_edge(self):
        '''Clock edge in the REQ state (waiting for SWD r/w request).'''
        # Check for a JTAG->SWD enable sequence.
        m = re.search(RE_SWDSWITCH, self.bits)
        if m is not None:
            self.putx('enable', 16, 'JTAG->SWD')
            self.reset_state()
            return

        # Or a valid SWD Request packet.
        m = re.search(RE_SWDREQ, self.bits)
        if m is not None:
            calc_parity = sum([int(x) for x in m.group('rw') + m.group('apdp') + m.group('addr')]) % 2
            parity = '' if str(calc_parity) == m.group('parity') else 'E'
            self.rw = 'R' if m.group('rw') == '1' else 'W'
            self.apdp = 'AP' if m.group('apdp') == '1' else 'DP'
            self.addr = int(m.group('addr')[::-1], 2) << 2
            self.putx('read' if self.rw == 'R' else 'write', 8, self.get_address_description())
            self.next_state()
            return

    def handle_ack_edge(self):
        '''Clock edge in the ACK state (waiting for complete ACK sequence).'''
        if len(self.bits) < 3:
            return
        if self.bits == '100':
            self.putx('ack', 3, 'OK')
            self.ack = 'OK'
            self.next_state()
        elif self.bits == '001':
            self.putx('ack', 3, 'FAULT')
            self.ack = 'FAULT'
            if self.orundetect == 1:
                self.next_state()
            else:
                self.reset_state()
            self.turnaround = 1
        elif self.bits == '010':
            self.putx('ack', 3, 'WAIT')
            self.ack = 'WAIT'
            if self.orundetect == 1:
                self.next_state()
            else:
                self.reset_state()
            self.turnaround = 1
        elif self.bits == '111':
            self.putx('ack', 3, 'NOREPLY')
            self.ack = 'NOREPLY'
            self.reset_state()
        else:
            self.putx('ack', 3, 'ERROR')
            self.ack = 'ERROR'
            self.reset_state()

    def handle_data_edge(self):
        '''Clock edge in the DATA state (waiting for 32 bits to clock past).'''
        if len(self.bits) < 32:
            return
        self.data = 0
        self.dparity = 0
        for x in range(32):
            if self.bits[x] == '1':
                self.data += (1 << x)
                self.dparity += 1
        self.dparity = self.dparity % 2

        self.putx('data', 32, '0x%08x' % self.data)
        self.next_state()

    def handle_dparity_edge(self):
        '''Clock edge in the DPARITY state (clocking in parity bit).'''
        if str(self.dparity) != self.bits:
            self.putx('parity', 1, str(self.dparity) + self.bits) # PARITY ERROR
        elif self.rw == 'W':
            self.handle_completed_write()
        self.next_state()

    def handle_completed_write(self):
        '''
        Update internal state of the debug port based on a completed
        write operation.
        '''
        if self.apdp != 'DP':
            return
        elif self.addr == ADDR_DP_SELECT:
            self.ctrlsel = self.data & BIT_SELECT_CTRLSEL
        elif self.addr == ADDR_DP_CTRLSTAT and self.ctrlsel == 0:
            self.orundetect = self.data & BIT_CTRLSTAT_ORUNDETECT

    def get_address_description(self):
        '''
        Return a human-readable description of the currently selected address,
        for annotated results.
        '''
        if self.apdp == 'DP':
            if self.rw == 'R':
                # Tables 2-4 & 2-5 in ADIv5.2 spec ARM document IHI 0031C
                return {
                    0: 'IDCODE',
                    0x4: 'R CTRL/STAT' if self.ctrlsel == 0 else 'R DLCR',
                    0x8: 'RESEND',
                    0xC: 'RDBUFF'
                }[self.addr]
            elif self.rw == 'W':
                # Tables 2-4 & 2-5 in ADIv5.2 spec ARM document IHI 0031C
                return {
                    0: 'W ABORT',
                    0x4: 'W CTRL/STAT' if self.ctrlsel == 0 else 'W DLCR',
                    0x8: 'W SELECT',
                    0xC: 'W RESERVED'
                }[self.addr]
        elif self.apdp == 'AP':
            if self.rw == 'R':
                return 'R AP%x' % self.addr
            elif self.rw == 'W':
                return 'W AP%x' % self.addr

        # Any legitimate operations shouldn't fall through to here, probably
        # a decoder bug.
        return '? %s%s%x' % (self.rw, self.apdp, self.addr)