This file is indexed.

/usr/include/shogun/ui/GUIClassifier.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2008 Soeren Sonnenburg
 * Copyright (C) 1999-2008 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _GUICLASSIFIER_H__
#define _GUICLASSIFIER_H__

#include <shogun/lib/config.h>
#include <shogun/base/SGObject.h>
#include <shogun/machine/Machine.h>
#include <shogun/classifier/svm/SVM.h>

namespace shogun
{
class CSGInterface;

/** @brief UI classifier */
class CGUIClassifier : public CSGObject
{
	public:
		/** constructor */
		CGUIClassifier() { };
		/** constructor
		 * @param interface
		 */
		CGUIClassifier(CSGInterface* interface);
		/** destructor */
		~CGUIClassifier();

		/** create new classifier */
		bool new_classifier(char* name, int32_t d=6, int32_t from_d=40);
		/** set maximum train time */
		bool set_max_train_time(float64_t max);
		/** load classifier from file */
		bool load(char* filename, char* type);
		/** save
		 * @param param
		 */
		bool save(char* param);
		/** classify */
		CLabels* classify();
		/** classify kernel machine */
		CLabels* classify_kernelmachine();
		/** classify distance machine */
		CLabels* classify_distancemachine();
		/** classify linear */
		CLabels* classify_linear();
		/** classify byte linear */
		CLabels* classify_byte_linear();
		/** classify example
		 * @param idx
		 * @param result
		 */
		bool classify_example(int32_t idx, float64_t& result);
		/** get classifier */
		inline CMachine* get_classifier() { return classifier; }

		/** get trained classifier
		 * @param weights
		 * @param rows
		 * @param cols
		 * @param bias
		 * @param brows
		 * @param bcols
		 * @param idx
		 */
		bool get_trained_classifier(
			float64_t* &weights, int32_t& rows, int32_t& cols,
			float64_t*& bias, int32_t& brows, int32_t& bcols,
			int32_t idx=-1); // which SVM in Multiclass

		/** get number of SVMs in Multiclass */
		int32_t get_num_svms();
		/** get svm
		 * @param weights
		 * @param rows
		 * @param cols
		 * @param bias
		 * @param brows
		 * @param bcols
		 * @param idx
		 */
		bool get_svm(
			float64_t* &weights, int32_t& rows, int32_t& cols,
			float64_t*& bias, int32_t& brows, int32_t& bcols,
			int32_t idx=-1); // which SVM in Multiclass
		/** get linear
		 * @param weights
		 * @param rows
		 * @param cols
		 * @param bias
		 * @param brows
		 * @param bcols
		 */
		bool get_linear(
			float64_t* &weights, int32_t& rows, int32_t& cols,
			float64_t*& bias, int32_t& brows, int32_t& bcols);
		/** get clustering
		 * @param weights
		 * @param rows
		 * @param cols
		 * @param bias
		 * @param brows
		 * @param bcols
		 */
		bool get_clustering(
			float64_t* &weights, int32_t& rows, int32_t& cols,
			float64_t*& bias, int32_t& brows, int32_t& bcols);

		// perceptron learnrate & maxiter
		/** set perceptron parameters
		 * @param lernrate
		 * @param maxiter
		 */
		bool set_perceptron_parameters(float64_t lernrate, int32_t maxiter);

		// SVM functions
		/** set svm C
		 * @param C1
		 * @param C2
		 */
		bool set_svm_C(float64_t C1, float64_t C2);
		/** set svm bufsize
		 * @param bufsize
		 */
		bool set_svm_bufsize(int32_t bufsize);
		/** set svm qpsize
		 * @param qpsize
		 */
		bool set_svm_qpsize(int32_t qpsize);
		/** set svm max qpsize
		 * @param max_qpsize
		 */
		bool set_svm_max_qpsize(int32_t max_qpsize);
		/** set svm shrinking enabled
		 * @param enabled
		 */
		bool set_svm_shrinking_enabled(bool enabled);
		/** set svm nu
		 * @param nu
		 */
		bool set_svm_nu(float64_t nu);
		/** set svm batch computation enabled
		 * @param enabled
		 */
		bool set_svm_batch_computation_enabled(bool enabled);
		/** set do auc maximization
		 * @param do_auc
		 */
		bool set_do_auc_maximization(bool do_auc);
		/** set svm linadd enabled
		 * @param enabled
		 */
		bool set_svm_linadd_enabled(bool enabled);
		/** set svm bias enabled
		 * @param enabled
		 */
		bool set_svm_bias_enabled(bool enabled);
		/** set mkl interleaved enabled
		 * @param enabled
		 */
		bool set_mkl_interleaved_enabled(bool enabled);
		/** set svm epsilon
		 * @param epsilon
		 */
		bool set_svm_epsilon(float64_t epsilon);
		/** set svr tube epsilon
		 * @param tube_epsilon
		 */
		bool set_svr_tube_epsilon(float64_t tube_epsilon);
		/** set svm mkl parameters
		 * @param weight_epsilon
		 * @param C_mkl
		 * @param mkl_norm
		 */
		bool set_svm_mkl_parameters(
			float64_t weight_epsilon, float64_t C_mkl, float64_t mkl_norm);
		/** set mkl block norm
		 * @param mkl_bnorm
		 */
		bool set_mkl_block_norm(float64_t mkl_bnorm);
		/** set elasticnet lambda
		 * @param lambda
		 */
		bool set_elasticnet_lambda(float64_t lambda);
		/** set svm precompute enabled
		 * @param precompute
		 */
		bool set_svm_precompute_enabled(int32_t precompute);

		/** set KRR's tau */
		bool set_krr_tau(float64_t tau=1);
		/** set solver type */
		bool set_solver(char* solver);
		/** set constraint generator */
		bool set_constraint_generator(char* cg);

		/** train MKL multiclass*/
		bool train_mkl_multiclass();
		/** train MKL */
		bool train_mkl();
		/** train SVM */
		bool train_svm();
		/** train K-nearest-neighbour */
		bool train_knn(int32_t k=3);
		/** train kernel ridge regression */
		bool train_krr();
		/** train clustering */
		bool train_clustering(int32_t k=3, int32_t max_iter=1000);
		/** train linear classifier
		 * @param gamma gamma parameter of LDA
		 */
		bool train_linear(float64_t gamma=0);
		/** train sparse linear classifier */
		bool train_sparse_linear();
		/** train WD OCAS */
		bool train_wdocas();

		/** @return object name */
		virtual const char* get_name() const { return "GUIClassifier"; }

	protected:
		/** ui */
		CSGInterface* ui;
		/** classifier */
		CMachine* classifier;
		/** max train time */
		float64_t max_train_time;
		/** perceptron learnrate */
		float64_t perceptron_learnrate;
		/** perceptron maxiter */
		int32_t perceptron_maxiter;
		/** svm qpsize */
		int32_t svm_qpsize;
		/** svm bufsize */
		int32_t svm_bufsize;
		/** svm max qpsize */
		int32_t svm_max_qpsize;
		/** mkl norm */
		float64_t mkl_norm;
		/** mkl block norm */
		float64_t mkl_block_norm;
		/** ent lambda */
		float64_t ent_lambda;
		/** svm weight epsilon */
		float64_t svm_weight_epsilon;
		/** svm epsilon */
		float64_t svm_epsilon;
		/** svm tube epsilon */
		float64_t svm_tube_epsilon;
		/** svm nu */
		float64_t svm_nu;
		/** svm C1 */
		float64_t svm_C1;
		/** svm C2 */
		float64_t svm_C2;
		/** C mkl */
		float64_t C_mkl;
		/** krr tau */
		float64_t krr_tau;
		/** mkl use interleaved */
		bool mkl_use_interleaved;
		/** svm use bias */
		bool svm_use_bias;
		/** svm use batch computation */
		bool svm_use_batch_computation;
		/** svm use linadd */
		bool svm_use_linadd;
		/** svm use precompute */
		bool svm_use_precompute;
		/** svm use precompute subkernel */
		bool svm_use_precompute_subkernel;
		/** svm use precompute subkernel light */
		bool svm_use_precompute_subkernel_light;
		/** svm use shrinking */
		bool svm_use_shrinking;
		/** svm do auc maximization */
		bool svm_do_auc_maximization;

		/** constraint generator */
		CSVM* constraint_generator;
		/** solver type */
		ESolverType solver_type;
};
}
#endif