/usr/include/shogun/multiclass/GaussianNaiveBayes.h is in libshogun-dev 3.2.0-7.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2011 Sergey Lisitsyn
* Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
*/
#ifndef GAUSSIANNAIVEBAYES_H_
#define GAUSSIANNAIVEBAYES_H_
#include <shogun/machine/NativeMulticlassMachine.h>
#include <shogun/mathematics/Math.h>
#include <shogun/features/DotFeatures.h>
namespace shogun {
class CLabels;
class CDotFeatures;
class CFeatures;
/** @brief Class GaussianNaiveBayes, a Gaussian Naive Bayes classifier
*
* This classifier assumes that a posteriori conditional probabilities
* are gaussian pdfs. For each vector gaussian naive bayes chooses
* the class C with maximal
*
* \f[
* P(c) \prod_{i} P(x_i|c)
* \f]
*
*/
class CGaussianNaiveBayes : public CNativeMulticlassMachine
{
public:
MACHINE_PROBLEM_TYPE(PT_MULTICLASS)
/** default constructor
*
*/
CGaussianNaiveBayes();
/** constructor
* @param train_examples train examples
* @param train_labels labels corresponding to train_examples
*/
CGaussianNaiveBayes(CFeatures* train_examples, CLabels* train_labels);
/** destructor
*
*/
virtual ~CGaussianNaiveBayes();
/** set features for classify
* @param features features to be set
*/
virtual void set_features(CFeatures* features);
/** get features for classify
* @return current features
*/
virtual CFeatures* get_features();
/** classify specified examples
* @param data examples to be classified
* @return labels corresponding to data
*/
virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);
/** classifiy specified example
* @param idx example index
* @return label
*/
virtual float64_t apply_one(int32_t idx);
/** get name
* @return classifier name
*/
virtual const char* get_name() const { return "GaussianNaiveBayes"; };
/** get classifier type
* @return classifier type
*/
virtual EMachineType get_classifier_type() { return CT_GAUSSIANNAIVEBAYES; };
protected:
/** train classifier
* @param data train examples
* @return true if successful
*/
virtual bool train_machine(CFeatures* data=NULL);
protected:
/// features for training or classifying
CDotFeatures* m_features;
/// minimal label
int32_t m_min_label;
/// number of different classes (labels)
int32_t m_num_classes;
/// dimensionality of feature space
int32_t m_dim;
/// means for normal distributions of features
SGMatrix<float64_t> m_means;
/// variances for normal distributions of features
SGMatrix<float64_t> m_variances;
/// a priori probabilities of labels
SGVector<float64_t> m_label_prob;
/// label rates
SGVector<float64_t> m_rates;
};
}
#endif /* GAUSSIANNAIVEBAYES_H_ */
|