/usr/include/shogun/mathematics/JacobiEllipticFunctions.h is in libshogun-dev 3.2.0-7.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Soumyajit De
*
* KRYLSTAT Copyright 2011 by Erlend Aune <erlenda@math.ntnu.no> under GPL2+
* (few parts rewritten and adjusted for shogun)
*
* NOTE: For higher precision, the methods in this class rely on an external
* library, ARPREC (http://crd-legacy.lbl.gov/~dhbailey/mpdist/), in absense of
* which they fallback to shogun datatypes. To use it with shogun, configure
* ARPREC with `CXX="c++ -fPIC" ./configure' in order to link.
*/
#ifndef JACOBI_ELLIPTIC_FUNCTIONS_H_
#define JACOBI_ELLIPTIC_FUNCTIONS_H_
#include <shogun/lib/config.h>
#include <shogun/base/SGObject.h>
#include <limits>
#include <math.h>
#ifdef HAVE_ARPREC
#include <arprec/mp_real.h>
#include <arprec/mp_complex.h>
#endif //HAVE_ARPREC
namespace shogun
{
/** @brief Class that contains methods for computing Jacobi elliptic functions
* related to complex analysis. These functions are inverse of the elliptic
* integral of first kind, i.e.
* \f[
* u(k,m)=\int_{0}^{k}\frac{dt}{\sqrt{(1-t^{2})(1-m^{2}t^{2})}}
* =\int_{0}^{\varphi}\frac{d\theta}{\sqrt{(1-m^{2}sin^{2}\theta)}}
* \f]
* where \f$k=sin\varphi\f$, \f$t=sin\theta\f$ and parameter \f$m, 0\le m
* \le 1\f$ is called modulus. Three main Jacobi elliptic functions are defined
* as \f$sn(u,m)=k=sin\theta\f$, \f$cn(u,m)=cos\theta=\sqrt{1-sn(u,m)^{2}}\f$
* and \f$dn(u,m)=\sqrt{1-m^{2}sn(u,m)^{2}}\f$.
* For \f$k=1\f$, i.e. \f$\varphi=\frac{\pi}{2}\f$, \f$u(1,m)=K(m)\f$ is known
* as the complete elliptic integral of first kind. Similarly, \f$u(1,m'))=
* K'(m')\f$, \f$m'=\sqrt{1-m^{2}}\f$ is called the complementary complete
* elliptic integral of first kind. Jacobi functions are double periodic with
* quardratic periods \f$K\f$ and \f$K'\f$.
*
* This class provides two sets of methods for computing \f$K,K'\f$, and
* \f$sn,cn,dn\f$. Useful for computing rational approximation of matrix
* functions given by Cauchy's integral formula, etc.
*/
class CJacobiEllipticFunctions: public CSGObject
{
#ifdef HAVE_ARPREC
typedef mp_real Real;
typedef mp_complex Complex;
#else
typedef float64_t Real;
typedef complex128_t Complex;
#endif //HAVE_ARPREC
private:
static inline Real compute_quarter_period(Real b)
{
#ifdef HAVE_ARPREC
const Real eps=mp_real::_eps;
const Real pi=mp_real::_pi;
#else
const Real eps=std::numeric_limits<Real>::epsilon();
const Real pi=M_PI;
#endif //HAVE_ARPREC
Real a=1.0;
Real mm=1.0;
int64_t p=2;
do
{
Real a_new=(a+b)*0.5;
Real b_new=sqrt(a*b);
Real c=(a-b)*0.5;
mm=Real(p)*c*c;
p<<=1;
a=a_new;
b=b_new;
} while (mm>eps);
return pi*0.5/a;
}
static inline Real poly_six(Real x)
{
return (132*pow(x,6)+42*pow(x,5)+14*pow(x,4)+5*pow(x,3)+2*pow(x,2)+x);
}
public:
/** Computes the quarter periods (K and K') of Jacobian elliptic functions
* (see class description).
* @param L
* @param K the quarter period (to be computed) on the Real axis
* @param Kp the quarter period (to be computed) on the Imaginary axis
* computed
*/
static void ellipKKp(Real L, Real &K, Real &Kp);
/** Computes three main Jacobi elliptic functions, \f$sn(u,m)\f$,
* \f$cn(u,m)\f$ and \f$dn(u,m)\f$ (see class description).
* @param u the elliptic integral of the first kind \f$u(k,m)\f$
* @param m the modulus parameter, \f$0\le m \le 1\f$
* @param sn Jacobi elliptic function sn(u,m)
* @param cn Jacobi elliptic function cn(u,m)
* @param dn Jacobi elliptic function dn(u,m)
*/
static void ellipJC(Complex u, Real m, Complex &sn, Complex &cn,
Complex &dn);
#ifdef HAVE_ARPREC
/** Wrapper method for ellipKKp if ARPREC is present (for high precision)
* @param L
* @param K the quarter period (to be computed) on the Real axis
* @param Kp the quarter period (to be computed) on the Imaginary axis
* computed
*/
static void ellipKKp(float64_t L, float64_t &K, float64_t &Kp)
{
mp::mp_init(100, NULL, true);
mp_real _K, _Kp;
ellipKKp(mp_real(L), _K, _Kp);
K=dble(_K);
Kp=dble(_Kp);
mp::mp_finalize();
}
/** Wrapper method for ellipJC if ARPREC is present (for high precision)
* @param u the elliptic integral of the first kind \f$u(k,m)\f$
* @param m the modulus parameter, \f$0\le m \le 1\f$
* @param sn Jacobi elliptic function sn(u,m)
* @param cn Jacobi elliptic function cn(u,m)
* @param dn Jacobi elliptic function dn(u,m)
*/
static void ellipJC(complex128_t u, float64_t m,
complex128_t &sn, complex128_t &cn, complex128_t &dn)
{
mp::mp_init(100, NULL, true);
mp_complex _sn, _cn, _dn;
ellipJC(mp_complex(u.real(),u.imag()), mp_real(m), _sn, _cn, _dn);
sn=complex128_t(dble(_sn.real),dble(_sn.imag));
cn=complex128_t(dble(_cn.real),dble(_cn.imag));
dn=complex128_t(dble(_dn.real),dble(_dn.imag));
mp::mp_finalize();
}
#endif //HAVE_ARPREC
/** @return object name */
virtual const char* get_name() const
{
return "JacobiEllipticFunctions";
}
};
}
#endif /* JACOBI_ELLIPTIC_FUNCTIONS_H_ */
|