/usr/include/shogun/lib/tapkee/methods.hpp is in libshogun-dev 3.2.0-7.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | /* This software is distributed under BSD 3-clause license (see LICENSE file).
*
* Copyright (c) 2012-2013 Sergey Lisitsyn, Fernando Iglesias
*/
#ifndef TAPKEE_METHODS_H_
#define TAPKEE_METHODS_H_
/* Tapkee includes */
#include <shogun/lib/tapkee/defines.hpp>
#include <shogun/lib/tapkee/utils/naming.hpp>
#include <shogun/lib/tapkee/utils/time.hpp>
#include <shogun/lib/tapkee/utils/logging.hpp>
#include <shogun/lib/tapkee/utils/conditional_select.hpp>
#include <shogun/lib/tapkee/utils/features.hpp>
#include <shogun/lib/tapkee/parameters/defaults.hpp>
#include <shogun/lib/tapkee/parameters/context.hpp>
#include <shogun/lib/tapkee/routines/locally_linear.hpp>
#include <shogun/lib/tapkee/routines/eigendecomposition.hpp>
#include <shogun/lib/tapkee/routines/generalized_eigendecomposition.hpp>
#include <shogun/lib/tapkee/routines/multidimensional_scaling.hpp>
#include <shogun/lib/tapkee/routines/diffusion_maps.hpp>
#include <shogun/lib/tapkee/routines/laplacian_eigenmaps.hpp>
#include <shogun/lib/tapkee/routines/isomap.hpp>
#include <shogun/lib/tapkee/routines/pca.hpp>
#include <shogun/lib/tapkee/routines/random_projection.hpp>
#include <shogun/lib/tapkee/routines/spe.hpp>
#include <shogun/lib/tapkee/routines/fa.hpp>
#include <shogun/lib/tapkee/routines/manifold_sculpting.hpp>
#include <shogun/lib/tapkee/neighbors/neighbors.hpp>
#include <shogun/lib/tapkee/external/barnes_hut_sne/tsne.hpp>
/* End of Tapkee includes */
namespace tapkee
{
//! Main namespace for all internal routines, should not be exposed as public API
namespace tapkee_internal
{
template <class RandomAccessIterator, class KernelCallback,
class DistanceCallback, class FeaturesCallback>
class ImplementationBase
{
public:
ImplementationBase(RandomAccessIterator b, RandomAccessIterator e,
KernelCallback k, DistanceCallback d, FeaturesCallback f,
ParametersSet& pmap, const Context& ctx) :
parameters(pmap), context(ctx), kernel(k), distance(d), features(f),
plain_distance(PlainDistance<RandomAccessIterator,DistanceCallback>(distance)),
kernel_distance(KernelDistance<RandomAccessIterator,KernelCallback>(kernel)),
begin(b), end(e),
eigen_method(), neighbors_method(), eigenshift(), traceshift(),
check_connectivity(), n_neighbors(), width(), timesteps(),
ratio(), max_iteration(), tolerance(), n_updates(), perplexity(),
theta(), squishing_rate(), global_strategy(), epsilon(), target_dimension(),
n_vectors(0), current_dimension(0)
{
n_vectors = (end-begin);
target_dimension = parameters(keywords::target_dimension);
n_neighbors = parameters(keywords::num_neighbors).checked().positive();
if (n_vectors > 0)
{
target_dimension.checked()
.inRange(static_cast<IndexType>(1),static_cast<IndexType>(n_vectors));
n_neighbors.checked()
.inRange(static_cast<IndexType>(3),static_cast<IndexType>(n_vectors));
}
eigen_method = parameters(keywords::eigen_method);
neighbors_method = parameters(keywords::neighbors_method);
check_connectivity = parameters(keywords::check_connectivity);
width = parameters(keywords::gaussian_kernel_width).checked().positive();
timesteps = parameters(keywords::diffusion_map_timesteps).checked().positive();
eigenshift = parameters(keywords::nullspace_shift);
traceshift = parameters(keywords::klle_shift);
max_iteration = parameters(keywords::max_iteration);
tolerance = parameters(keywords::spe_tolerance).checked().positive();
n_updates = parameters(keywords::spe_num_updates).checked().positive();
theta = parameters(keywords::sne_theta).checked().nonNegative();
squishing_rate = parameters(keywords::squishing_rate);
global_strategy = parameters(keywords::spe_global_strategy);
epsilon = parameters(keywords::fa_epsilon).checked().nonNegative();
perplexity = parameters(keywords::sne_perplexity).checked().nonNegative();
ratio = parameters(keywords::landmark_ratio);
if (!is_dummy<FeaturesCallback>::value)
{
current_dimension = features.dimension();
}
else
{
current_dimension = 0;
}
}
TapkeeOutput embedUsing(DimensionReductionMethod method)
{
if (context.is_cancelled())
throw cancelled_exception();
using std::mem_fun_ref_t;
using std::mem_fun_ref;
typedef std::mem_fun_ref_t<TapkeeOutput,ImplementationBase> ImplRef;
#define tapkee_method_handle(X) \
case X: \
{ \
timed_context tctx__("[+] embedding with " # X); \
ImplRef ref = conditional_select< \
((!MethodTraits<X>::needs_kernel) || (!is_dummy<KernelCallback>::value)) && \
((!MethodTraits<X>::needs_distance) || (!is_dummy<DistanceCallback>::value)) && \
((!MethodTraits<X>::needs_features) || (!is_dummy<FeaturesCallback>::value)), \
ImplRef>()(mem_fun_ref(&ImplementationBase::embed##X), \
mem_fun_ref(&ImplementationBase::embedEmpty)); \
return ref(*this); \
} \
break \
switch (method)
{
tapkee_method_handle(KernelLocallyLinearEmbedding);
tapkee_method_handle(KernelLocalTangentSpaceAlignment);
tapkee_method_handle(DiffusionMap);
tapkee_method_handle(MultidimensionalScaling);
tapkee_method_handle(LandmarkMultidimensionalScaling);
tapkee_method_handle(Isomap);
tapkee_method_handle(LandmarkIsomap);
tapkee_method_handle(NeighborhoodPreservingEmbedding);
tapkee_method_handle(LinearLocalTangentSpaceAlignment);
tapkee_method_handle(HessianLocallyLinearEmbedding);
tapkee_method_handle(LaplacianEigenmaps);
tapkee_method_handle(LocalityPreservingProjections);
tapkee_method_handle(PCA);
tapkee_method_handle(KernelPCA);
tapkee_method_handle(RandomProjection);
tapkee_method_handle(StochasticProximityEmbedding);
tapkee_method_handle(PassThru);
tapkee_method_handle(FactorAnalysis);
tapkee_method_handle(tDistributedStochasticNeighborEmbedding);
tapkee_method_handle(ManifoldSculpting);
}
#undef tapkee_method_handle
return TapkeeOutput();
}
private:
static const IndexType SkipOneEigenvalue = 1;
static const IndexType SkipNoEigenvalues = 0;
ParametersSet parameters;
Context context;
KernelCallback kernel;
DistanceCallback distance;
FeaturesCallback features;
PlainDistance<RandomAccessIterator,DistanceCallback> plain_distance;
KernelDistance<RandomAccessIterator,KernelCallback> kernel_distance;
RandomAccessIterator begin;
RandomAccessIterator end;
Parameter eigen_method;
Parameter neighbors_method;
Parameter eigenshift;
Parameter traceshift;
Parameter check_connectivity;
Parameter n_neighbors;
Parameter width;
Parameter timesteps;
Parameter ratio;
Parameter max_iteration;
Parameter tolerance;
Parameter n_updates;
Parameter perplexity;
Parameter theta;
Parameter squishing_rate;
Parameter global_strategy;
Parameter epsilon;
Parameter target_dimension;
IndexType n_vectors;
IndexType current_dimension;
template<class Distance>
Neighbors findNeighborsWith(Distance d)
{
return find_neighbors(neighbors_method,begin,end,d,n_neighbors,check_connectivity);
}
static tapkee::ProjectingFunction unimplementedProjectingFunction()
{
return tapkee::ProjectingFunction();
}
TapkeeOutput embedEmpty()
{
throw unsupported_method_error("Some callback is missed");
return TapkeeOutput();
}
TapkeeOutput embedKernelLocallyLinearEmbedding()
{
Neighbors neighbors = findNeighborsWith(kernel_distance);
SparseWeightMatrix weight_matrix =
linear_weight_matrix(begin,end,neighbors,kernel,eigenshift,traceshift);
DenseMatrix embedding =
eigendecomposition<SparseWeightMatrix,SparseInverseMatrixOperation>(eigen_method,
weight_matrix,target_dimension,SkipOneEigenvalue).first;
return TapkeeOutput(embedding, unimplementedProjectingFunction());
}
TapkeeOutput embedKernelLocalTangentSpaceAlignment()
{
Neighbors neighbors = findNeighborsWith(kernel_distance);
SparseWeightMatrix weight_matrix =
tangent_weight_matrix(begin,end,neighbors,kernel,target_dimension,eigenshift);
DenseMatrix embedding =
eigendecomposition<SparseWeightMatrix,SparseInverseMatrixOperation>(eigen_method,
weight_matrix,target_dimension,SkipOneEigenvalue).first;
return TapkeeOutput(embedding, unimplementedProjectingFunction());
}
TapkeeOutput embedDiffusionMap()
{
#ifdef TAPKEE_GPU
#define DM_MATRIX_OP GPUDenseImplicitSquareMatrixOperation
#else
#define DM_MATRIX_OP DenseImplicitSquareSymmetricMatrixOperation
#endif
DenseSymmetricMatrix diffusion_matrix =
compute_diffusion_matrix(begin,end,distance,timesteps,width);
DenseMatrix embedding =
eigendecomposition<DenseSymmetricMatrix,DM_MATRIX_OP>(eigen_method,diffusion_matrix,
target_dimension,SkipNoEigenvalues).first;
return TapkeeOutput(embedding, unimplementedProjectingFunction());
#undef DM_MATRIX_OP
}
TapkeeOutput embedMultidimensionalScaling()
{
#ifdef TAPKEE_GPU
#define MDS_MATRIX_OP GPUDenseImplicitSquareMatrixOperation
#else
#define MDS_MATRIX_OP DenseMatrixOperation
#endif
DenseSymmetricMatrix distance_matrix = compute_distance_matrix(begin,end,distance);
centerMatrix(distance_matrix);
distance_matrix.array() *= -0.5;
EigendecompositionResult embedding =
eigendecomposition<DenseSymmetricMatrix,MDS_MATRIX_OP>(eigen_method,
distance_matrix,target_dimension,SkipNoEigenvalues);
for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
embedding.first.col(i).array() *= sqrt(embedding.second(i));
return TapkeeOutput(embedding.first, unimplementedProjectingFunction());
#undef MDS_MATRIX_OP
}
TapkeeOutput embedLandmarkMultidimensionalScaling()
{
ratio.checked()
.inClosedRange(static_cast<ScalarType>(3.0/n_vectors),
static_cast<ScalarType>(1.0));
Landmarks landmarks =
select_landmarks_random(begin,end,ratio);
DenseSymmetricMatrix distance_matrix =
compute_distance_matrix(begin,end,landmarks,distance);
DenseVector landmark_distances_squared = distance_matrix.colwise().mean();
centerMatrix(distance_matrix);
distance_matrix.array() *= -0.5;
EigendecompositionResult landmarks_embedding =
eigendecomposition<DenseSymmetricMatrix,DenseMatrixOperation>(eigen_method,
distance_matrix,target_dimension,SkipNoEigenvalues);
for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
landmarks_embedding.first.col(i).array() *= sqrt(landmarks_embedding.second(i));
return TapkeeOutput(triangulate(begin,end,distance,landmarks,
landmark_distances_squared,landmarks_embedding,target_dimension), unimplementedProjectingFunction());
}
TapkeeOutput embedIsomap()
{
Neighbors neighbors = findNeighborsWith(plain_distance);
DenseSymmetricMatrix shortest_distances_matrix =
compute_shortest_distances_matrix(begin,end,neighbors,distance);
shortest_distances_matrix = shortest_distances_matrix.array().square();
centerMatrix(shortest_distances_matrix);
shortest_distances_matrix.array() *= -0.5;
EigendecompositionResult embedding =
eigendecomposition<DenseSymmetricMatrix,DenseMatrixOperation>(eigen_method,
shortest_distances_matrix,target_dimension,SkipNoEigenvalues);
for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
embedding.first.col(i).array() *= sqrt(embedding.second(i));
return TapkeeOutput(embedding.first, unimplementedProjectingFunction());
}
TapkeeOutput embedLandmarkIsomap()
{
ratio.checked()
.inClosedRange(static_cast<ScalarType>(3.0/n_vectors),
static_cast<ScalarType>(1.0));
Neighbors neighbors = findNeighborsWith(plain_distance);
Landmarks landmarks =
select_landmarks_random(begin,end,ratio);
DenseMatrix distance_matrix =
compute_shortest_distances_matrix(begin,end,landmarks,neighbors,distance);
distance_matrix = distance_matrix.array().square();
DenseVector col_means = distance_matrix.colwise().mean();
DenseVector row_means = distance_matrix.rowwise().mean();
ScalarType grand_mean = distance_matrix.mean();
distance_matrix.array() += grand_mean;
distance_matrix.colwise() -= row_means;
distance_matrix.rowwise() -= col_means.transpose();
distance_matrix.array() *= -0.5;
EigendecompositionResult landmarks_embedding;
if (eigen_method.is(Dense))
{
DenseMatrix distance_matrix_sym = distance_matrix*distance_matrix.transpose();
landmarks_embedding = eigendecomposition<DenseSymmetricMatrix,DenseImplicitSquareMatrixOperation>
(eigen_method,distance_matrix_sym,target_dimension,SkipNoEigenvalues);
}
else
{
landmarks_embedding = eigendecomposition<DenseSymmetricMatrix,DenseImplicitSquareMatrixOperation>
(eigen_method,distance_matrix,target_dimension,SkipNoEigenvalues);
}
DenseMatrix embedding = distance_matrix.transpose()*landmarks_embedding.first;
for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
embedding.col(i).array() /= sqrt(sqrt(landmarks_embedding.second(i)));
return TapkeeOutput(embedding,unimplementedProjectingFunction());
}
TapkeeOutput embedNeighborhoodPreservingEmbedding()
{
Neighbors neighbors = findNeighborsWith(kernel_distance);
SparseWeightMatrix weight_matrix =
linear_weight_matrix(begin,end,neighbors,kernel,eigenshift,traceshift);
DenseSymmetricMatrixPair eig_matrices =
construct_neighborhood_preserving_eigenproblem(weight_matrix,begin,end,
features,current_dimension);
EigendecompositionResult projection_result =
generalized_eigendecomposition<DenseSymmetricMatrix,DenseSymmetricMatrix,DenseInverseMatrixOperation>(
eigen_method,eig_matrices.first,eig_matrices.second,target_dimension,SkipNoEigenvalues);
DenseVector mean_vector =
compute_mean(begin,end,features,current_dimension);
tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_result.first,mean_vector));
return TapkeeOutput(project(projection_result.first,mean_vector,begin,end,features,current_dimension),projecting_function);
}
TapkeeOutput embedHessianLocallyLinearEmbedding()
{
Neighbors neighbors = findNeighborsWith(kernel_distance);
SparseWeightMatrix weight_matrix =
hessian_weight_matrix(begin,end,neighbors,kernel,target_dimension);
return TapkeeOutput(eigendecomposition<SparseWeightMatrix,SparseInverseMatrixOperation>(eigen_method,
weight_matrix,target_dimension,SkipOneEigenvalue).first, unimplementedProjectingFunction());
}
TapkeeOutput embedLaplacianEigenmaps()
{
Neighbors neighbors = findNeighborsWith(plain_distance);
Laplacian laplacian =
compute_laplacian(begin,end,neighbors,distance,width);
return TapkeeOutput(generalized_eigendecomposition<SparseWeightMatrix,DenseDiagonalMatrix,SparseInverseMatrixOperation>(
eigen_method,laplacian.first,laplacian.second,target_dimension,SkipOneEigenvalue).first, unimplementedProjectingFunction());
}
TapkeeOutput embedLocalityPreservingProjections()
{
Neighbors neighbors = findNeighborsWith(plain_distance);
Laplacian laplacian =
compute_laplacian(begin,end,neighbors,distance,width);
DenseSymmetricMatrixPair eigenproblem_matrices =
construct_locality_preserving_eigenproblem(laplacian.first,laplacian.second,begin,end,
features,current_dimension);
EigendecompositionResult projection_result =
generalized_eigendecomposition<DenseSymmetricMatrix,DenseSymmetricMatrix,DenseInverseMatrixOperation>(
eigen_method,eigenproblem_matrices.first,eigenproblem_matrices.second,target_dimension,SkipNoEigenvalues);
DenseVector mean_vector =
compute_mean(begin,end,features,current_dimension);
tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_result.first,mean_vector));
return TapkeeOutput(project(projection_result.first,mean_vector,begin,end,features,current_dimension), projecting_function);
}
TapkeeOutput embedPCA()
{
DenseVector mean_vector =
compute_mean(begin,end,features,current_dimension);
DenseSymmetricMatrix centered_covariance_matrix =
compute_covariance_matrix(begin,end,mean_vector,features,current_dimension);
EigendecompositionResult projection_result =
eigendecomposition<DenseSymmetricMatrix,DenseMatrixOperation>(eigen_method,centered_covariance_matrix,target_dimension,SkipNoEigenvalues);
tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_result.first,mean_vector));
return TapkeeOutput(project(projection_result.first,mean_vector,begin,end,features,current_dimension), projecting_function);
}
TapkeeOutput embedRandomProjection()
{
DenseMatrix projection_matrix =
gaussian_projection_matrix(current_dimension, target_dimension);
DenseVector mean_vector =
compute_mean(begin,end,features,current_dimension);
tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_matrix,mean_vector));
return TapkeeOutput(project(projection_matrix,mean_vector,begin,end,features,current_dimension), projecting_function);
}
TapkeeOutput embedKernelPCA()
{
DenseSymmetricMatrix centered_kernel_matrix =
compute_centered_kernel_matrix(begin,end,kernel);
EigendecompositionResult embedding = eigendecomposition<DenseSymmetricMatrix,DenseMatrixOperation>(eigen_method,
centered_kernel_matrix,target_dimension,SkipNoEigenvalues);
for (IndexType i=0; i<static_cast<IndexType>(target_dimension); i++)
embedding.first.col(i).array() *= sqrt(embedding.second(i));
return TapkeeOutput(embedding.first, unimplementedProjectingFunction());
}
TapkeeOutput embedLinearLocalTangentSpaceAlignment()
{
Neighbors neighbors = findNeighborsWith(kernel_distance);
SparseWeightMatrix weight_matrix =
tangent_weight_matrix(begin,end,neighbors,kernel,target_dimension,eigenshift);
DenseSymmetricMatrixPair eig_matrices =
construct_lltsa_eigenproblem(weight_matrix,begin,end,
features,current_dimension);
EigendecompositionResult projection_result =
generalized_eigendecomposition<DenseSymmetricMatrix,DenseSymmetricMatrix,DenseInverseMatrixOperation>(
eigen_method,eig_matrices.first,eig_matrices.second,target_dimension,SkipNoEigenvalues);
DenseVector mean_vector =
compute_mean(begin,end,features,current_dimension);
tapkee::ProjectingFunction projecting_function(new tapkee::MatrixProjectionImplementation(projection_result.first,mean_vector));
return TapkeeOutput(project(projection_result.first,mean_vector,begin,end,features,current_dimension),
projecting_function);
}
TapkeeOutput embedStochasticProximityEmbedding()
{
Neighbors neighbors;
if (global_strategy.is(false))
{
neighbors = findNeighborsWith(plain_distance);
}
return TapkeeOutput(spe_embedding(begin,end,distance,neighbors,
target_dimension,global_strategy,tolerance,n_updates,max_iteration), unimplementedProjectingFunction());
}
TapkeeOutput embedPassThru()
{
DenseMatrix feature_matrix =
dense_matrix_from_features(features, current_dimension, begin, end);
return TapkeeOutput(feature_matrix.transpose(),tapkee::ProjectingFunction());
}
TapkeeOutput embedFactorAnalysis()
{
DenseVector mean_vector = compute_mean(begin,end,features,current_dimension);
return TapkeeOutput(project(begin,end,features,current_dimension,max_iteration,epsilon,
target_dimension, mean_vector), unimplementedProjectingFunction());
}
TapkeeOutput embedtDistributedStochasticNeighborEmbedding()
{
perplexity.checked()
.inClosedRange(static_cast<ScalarType>(0.0),
static_cast<ScalarType>((n_vectors-1)/3.0));
DenseMatrix data =
dense_matrix_from_features(features, current_dimension, begin, end);
DenseMatrix embedding(static_cast<IndexType>(target_dimension),n_vectors);
tsne::TSNE tsne;
tsne.run(data.data(),n_vectors,current_dimension,embedding.data(),target_dimension,perplexity,theta);
return TapkeeOutput(embedding.transpose(), unimplementedProjectingFunction());
}
TapkeeOutput embedManifoldSculpting()
{
squishing_rate.checked()
.inRange(static_cast<ScalarType>(0.0),
static_cast<ScalarType>(1.0));
DenseMatrix embedding =
dense_matrix_from_features(features, current_dimension, begin, end);
Neighbors neighbors = findNeighborsWith(plain_distance);
manifold_sculpting_embed(begin, end, embedding, target_dimension, neighbors, distance, max_iteration, squishing_rate);
return TapkeeOutput(embedding, tapkee::ProjectingFunction());
}
};
template <class RandomAccessIterator, class KernelCallback,
class DistanceCallback, class FeaturesCallback>
ImplementationBase<RandomAccessIterator,KernelCallback,DistanceCallback,FeaturesCallback>
initialize(RandomAccessIterator begin, RandomAccessIterator end,
KernelCallback kernel, DistanceCallback distance, FeaturesCallback features,
ParametersSet& pmap, const Context& ctx)
{
return ImplementationBase<RandomAccessIterator,KernelCallback,DistanceCallback,FeaturesCallback>(
begin,end,kernel,distance,features,pmap,ctx);
}
} // End of namespace tapkee_internal
} // End of namespace tapkee
#endif
|