This file is indexed.

/usr/include/shogun/lib/external/ssl.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*    Copyright 2006 Vikas Sindhwani (vikass@cs.uchicago.edu)
	  SVM-lin: Fast SVM Solvers for Supervised and Semi-supervised Learning

	  This file is part of SVM-lin.

	  SVM-lin is free software; you can redistribute it and/or modify
	  it under the terms of the GNU General Public License as published by
	  the Free Software Foundation; either version 2 of the License, or
	  (at your option) any later version.

	  SVM-lin is distributed in the hope that it will be useful,
	  but WITHOUT ANY WARRANTY; without even the implied warranty of
	  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	  GNU General Public License for more details.

	  You should have received a copy of the GNU General Public License
	  along with SVM-lin (see gpl.txt); if not, write to the Free Software
	  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
	  */
#ifndef DOXYGEN_SHOULD_SKIP_THIS

#ifndef _SSL_H
#define _SSL_H

/* OPTIMIZATION CONSTANTS */
#define CGITERMAX 10000 /* maximum number of CGLS iterations */
#define SMALL_CGITERMAX 10 /* for heuristic 1 in reference [2] */
#define EPSILON   1e-6 /* most tolerances are set to this value */
#define BIG_EPSILON 0.01 /* for heuristic 2 in reference [2] */
#define RELATIVE_STOP_EPS 1e-9 /* for L2-SVM-MFN relative stopping criterion */
#define MFNITERMAX 50 /* maximum number of MFN iterations */
#define TSVM_ANNEALING_RATE 1.5 /* rate at which lambda_u is increased in TSVM */
#define TSVM_LAMBDA_SMALL 1e-5 /* lambda_u starts from this value */
#define DA_ANNEALING_RATE 1.5 /* annealing rate for DA */
#define DA_INIT_TEMP 10 /* initial temperature relative to lambda_u */
#define DA_INNER_ITERMAX 100 /* maximum fixed temperature iterations for DA */
#define DA_OUTER_ITERMAX 30 /* maximum number of outer loops for DA */

#include <shogun/lib/common.h>
#include <shogun/features/DotFeatures.h>

namespace shogun
{
/** Data: Input examples are stored in sparse (Compressed Row Storage) format */
struct data
{
	/** number of examples */
	int32_t m;
	/** number of labeled examples */
	int32_t l;
	/** number of unlabeled examples l+u = m */
	int32_t u;
	/** number of features */
	int32_t n;
	/** number of non-zeros */
	int32_t nz;

	/** features */
	shogun::CDotFeatures* features;
	/** labels */
	float64_t *Y;
	/** cost associated with each example */
	float64_t *C;
};

/** defines a vector of doubles */
struct vector_double
{
	/** number of elements */
	int32_t d;
	/** ptr to vector elements*/
	float64_t *vec;
};

/** defines a vector of ints for index subsets */
struct vector_int
{
	/** number of elements */
	int32_t d;
	/** ptr to vector elements */
	int32_t *vec;
};

enum { RLS, SVM, TSVM, DA_SVM }; /* currently implemented algorithms */

/** various options user + internal optimisation */
struct options
{
	/* user options */
	/** regularization parameter */
	int32_t algo;
	/** regularization parameter */
	float64_t lambda;
	/** regularization parameter over unlabeled examples */
	float64_t lambda_u;
	/** maximum number of TSVM switches per fixed-weight label optimization */
	int32_t S;
	/** expected fraction of unlabeled examples in positive class */
	float64_t R;
	/** cost for positive examples */
	float64_t Cp;
	/** cost for negative examples */
	float64_t Cn;

	/*  internal optimization options */
	/** all tolerances */
	float64_t epsilon;
	/** max iterations for CGLS */
	int32_t cgitermax;
	/** max iterations for L2_SVM_MFN */
	int32_t mfnitermax;

	/** 1.0 if bias is to be used, 0.0 otherwise */
	float64_t bias;
};

/** used in line search */
class Delta {
	public:
		/** default constructor */
		Delta() { delta=0.0; index=0;s=0; }

		/** delta */
		float64_t delta;
		/** index */
		int32_t index;
		/** s */
		int32_t s;
};

inline bool operator<(const Delta& a , const Delta& b)
{
	return (a.delta < b.delta);
}

void initialize(struct vector_double *A, int32_t k, float64_t a);
/* initializes a vector_double to be of length k, all elements set to a */
void initialize(struct vector_int *A, int32_t k);
/* initializes a vector_int to be of length k, elements set to 1,2..k. */
void GetLabeledData(struct data *Data_Labeled, const struct data *Data);
/* extracts labeled data from Data and copies it into Data_Labeled */
float64_t norm_square(const vector_double *A); /* returns squared length of A */

/* ssl_train: takes data, options, uninitialized weight and output
   vector_doubles, routes it to the algorithm */
/* the learnt weight vector and the outputs it gives on the data matrix are saved */
void ssl_train(
	struct data *Data,
	struct options *Options,
	struct vector_double *W, /* weight vector */
	struct vector_double *O); /* output vector */

/* svmlin algorithms and their subroutines */

/* Conjugate Gradient for Sparse Linear Least Squares Problems */
/* Solves: min_w 0.5*Options->lamda*w'*w + 0.5*sum_{i in Subset} Data->C[i] (Y[i]- w' x_i)^2 */
/* over a subset of examples x_i specified by vector_int Subset */
int32_t CGLS(
	const struct data *Data,
	const struct options *Options,
	const struct vector_int *Subset,
	struct vector_double *Weights,
	struct vector_double *Outputs);

/* Linear Modified Finite Newton L2-SVM*/
/* Solves: min_w 0.5*Options->lamda*w'*w + 0.5*sum_i Data->C[i] max(0,1 - Y[i] w' x_i)^2 */
int32_t L2_SVM_MFN(
	const struct data *Data,
	struct options *Options,
	struct vector_double *Weights,
	struct vector_double *Outputs,
	int32_t ini); /* use ini=0 if no good starting guess for Weights, else 1 */

float64_t line_search(
	float64_t *w,
	float64_t *w_bar,
	float64_t lambda,
	float64_t *o,
	float64_t *o_bar,
	float64_t *Y,
	float64_t *C,
	int32_t d,
	int32_t l);

/* Transductive L2-SVM */
/* Solves : min_(w, Y[i],i in UNlabeled) 0.5*Options->lamda*w'*w + 0.5*(1/Data->l)*sum_{i in labeled} max(0,1 - Y[i] w' x_i)^2 + 0.5*(Options->lambda_u/Data->u)*sum_{i in UNlabeled} max(0,1 - Y[i] w' x_i)^2
   subject to: (1/Data->u)*sum_{i in UNlabeled} max(0,Y[i]) = Options->R */
int32_t TSVM_MFN(
	const struct data *Data,
	struct options *Options,
	struct vector_double *Weights,
	struct vector_double *Outputs);

int32_t switch_labels(
	float64_t* Y,
	float64_t* o,
	int32_t* JU,
	int32_t u,
	int32_t S);

/* Deterministic Annealing*/
int32_t DA_S3VM(
	struct data *Data,
	struct options *Options,
	struct vector_double *Weights,
	struct vector_double *Outputs);

void optimize_p(
	const float64_t* g, int32_t u, float64_t T, float64_t r, float64_t*p);

int32_t optimize_w(
	const struct data *Data,
	const  float64_t *p,
	struct options *Options,
	struct vector_double *Weights,
	struct vector_double *Outputs,
	int32_t ini);

float64_t transductive_cost(
	float64_t normWeights,
	float64_t *Y,
	float64_t *Outputs,
	int32_t m,
	float64_t lambda,
	float64_t lambda_u);

float64_t entropy(const  float64_t *p, int32_t u);

/* KL-divergence */
float64_t KL(const  float64_t *p, const  float64_t *q, int32_t u);
}
#endif // _SSL_H

#endif // DOXYGEN_SHOULD_SKIP_THIS