/usr/include/shogun/features/streaming/StreamingSparseFeatures.h is in libshogun-dev 3.2.0-7.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2011 Shashwat Lal Das
* Modifications (W) 2013 Thoralf Klein
* Copyright (C) 2011 Berlin Institute of Technology and Max-Planck-Society
*/
#ifndef _STREAMING_SPARSEFEATURES__H__
#define _STREAMING_SPARSEFEATURES__H__
#include <shogun/lib/common.h>
#include <shogun/mathematics/Math.h>
#include <shogun/features/streaming/StreamingDotFeatures.h>
#include <shogun/lib/DataType.h>
#include <shogun/io/streaming/InputParser.h>
namespace shogun
{
/** @brief This class implements streaming features with sparse feature vectors.
* The vector is represented as an SGSparseVector<T>. Each entry is of type
* SGSparseVectorEntry<T> with members `feat_index' and `entry'.
*
* This class expects the input from the StreamingFile object to be zero-based,
* i.e., a feature entered as 1:6.5 would have feat_index=0 and entry=6.5.
*
* The current example is stored as a combination of current_vector
* and current_label.
* current_num_features stores the highest dimensionality of examples encountered
* upto the point of the function call.
* For example, if the first example is '1:6.5 7:10.0', then current_num_features
* would be 7 after the first function call.
*
* Since the dimensionality of the feature space is not immediately known initially,
* current_num_features may increase as more examples are processed and larger
* dimensions are seen.
* For this purpose, `expand_if_required()' is provided which when called with a
* dynamically allocated float or double array and the length, reallocates that
* array to the new dimensionality (if necessary), setting the newer dimensions
* to zero, and updates the length parameter to equal the new length of the array.
*/
template <class T> class CStreamingSparseFeatures : public CStreamingDotFeatures
{
public:
/**
* Default constructor.
*
* Sets the reading functions to be
* CStreamingFile::get_*_vector and get_*_vector_and_label
* depending on the type T.
*/
CStreamingSparseFeatures();
/**
* Constructor taking args.
* Initializes the parser with the given args.
*
* @param file StreamingFile object, input file.
* @param is_labelled Whether examples are labelled or not.
* @param size Number of example objects to be stored in the parser at a time.
*/
CStreamingSparseFeatures(CStreamingFile* file,
bool is_labelled,
int32_t size);
/**
* Destructor.
*
* Ends the parsing thread. (Waits for pthread_join to complete)
*/
virtual ~CStreamingSparseFeatures();
/**
* Sets the read function (in case the examples are
* unlabelled) to get_*_vector() from CStreamingFile.
*
* The exact function depends on type T.
*
* The parser uses the function set by this while reading
* unlabelled examples.
*/
virtual void set_vector_reader();
/**
* Sets the read function (in case the examples are labelled)
* to get_*_vector_and_label from CStreamingFile.
*
* The exact function depends on type T.
*
* The parser uses the function set by this while reading
* labelled examples.
*/
virtual void set_vector_and_label_reader();
/**
* Starts the parsing thread.
*
* To be called before trying to use any feature vectors from this object.
*/
virtual void start_parser();
/**
* Ends the parsing thread.
*
* Waits for the thread to join.
*/
virtual void end_parser();
/**
* Instructs the parser to return the next example.
*
* This example is stored as the current_example in this object.
*
* @return True on success, false if there are no more
* examples, or an error occurred.
*/
virtual bool get_next_example();
/** get a single feature
*
* @param index index of feature in this vector
*
* @return sum of features that match dimension index and 0 if none is found
*/
T get_feature(int32_t index);
/**
* Return the current feature vector as an SGSparseVector<T>.
*
* @return The vector as SGSparseVector<T>
*/
SGSparseVector<T> get_vector();
/**
* Return the label of the current example as a float.
*
* Examples must be labelled, otherwise an error occurs.
*
* @return The label as a float64_t.
*/
virtual float64_t get_label();
/**
* Release the current example, indicating to the parser that
* it has been processed by the learning algorithm.
*
* The parser is then free to throw away that example.
*/
virtual void release_example();
/**
* Reset the file back to the first example
* if possible.
*/
virtual void reset_stream();
/** set number of features
*
* Sometimes when loading sparse features not all possible dimensions
* are used. This may pose a problem to classifiers when being applied
* to higher dimensional test-data. This function allows to
* artificially explode the feature space
*
* @param num the number of features, must be larger
* than the current number of features
* @return previous number of features
*/
int32_t set_num_features(int32_t num);
/** obtain the dimensionality of the feature space
*
* (not mix this up with the dimensionality of the input space, usually
* obtained via get_num_features())
*
* @return dimensionality
*/
virtual int32_t get_dim_feature_space() const;
/**
* Dot product taken with another StreamingDotFeatures object.
*
* Currently only works if it is a CStreamingSparseFeatures object.
* It takes the dot product of the current_vectors of both objects.
*
* @param df CStreamingDotFeatures object.
*
* @return Dot product.
*/
virtual float32_t dot(CStreamingDotFeatures *df);
/** compute the dot product between two sparse feature vectors
* alpha * vec^T * vec
*
* @param alpha scalar to multiply with
* @param avec first sparse feature vector
* @param alen avec's length
* @param bvec second sparse feature vector
* @param blen bvec's length
* @return dot product between the two sparse feature vectors
*/
static T sparse_dot(T alpha, SGSparseVectorEntry<T>* avec, int32_t alen, SGSparseVectorEntry<T>* bvec, int32_t blen);
/** compute the dot product between dense weights and a sparse feature vector
* alpha * sparse^T * w + b
*
* @param alpha scalar to multiply with
* @param vec dense vector to compute dot product with
* @param dim length of the dense vector
* @param b bias
* @return dot product between dense weights and a sparse feature vector
*/
T dense_dot(T alpha, T* vec, int32_t dim, T b);
/**
* Dot product with another float64_t type dense vector.
*
* @param vec2 The dense vector with which to take the dot product.
* @param vec2_len length of vector
*
* @return Dot product as a float64_t.
*/
virtual float64_t dense_dot(const float64_t* vec2, int32_t vec2_len);
/**
* Dot product with another dense vector.
*
* @param vec2 The dense vector with which to take the dot product.
* @param vec2_len length of vector
*
* @return Dot product as a float32_t.
*/
virtual float32_t dense_dot(const float32_t* vec2, int32_t vec2_len);
/**
* Add alpha*current_vector to another float64_t type dense vector.
* Takes the absolute value of current_vector if specified.
*
* @param alpha alpha
* @param vec2 vector to add to, float64_t*
* @param vec2_len length of vector
* @param abs_val true if abs of current_vector should be taken
*/
virtual void add_to_dense_vec(float64_t alpha, float64_t* vec2, int32_t vec2_len, bool abs_val=false);
/**
* Add alpha*current_vector to another dense vector.
* Takes the absolute value of current_vector if specified.
*
* @param alpha alpha
* @param vec2 vector to add to
* @param vec2_len length of vector
* @param abs_val true if abs of current_vector should be taken
*/
virtual void add_to_dense_vec(float32_t alpha, float32_t* vec2, int32_t vec2_len, bool abs_val=false);
/**
* Get number of non-zero entries in current sparse vector
*
* @return number of features explicity set in the sparse vector
*/
int64_t get_num_nonzero_entries();
/**
* Compute sum of squares of features on current vector.
*
* @return sum of squares for current vector
*/
float32_t compute_squared();
/**
* Ensure features of the current vector are in ascending order.
* It modifies the current_sgvector in-place and does not change
* the reference in current_sgvector.features.
*/
void sort_features();
/**
* Return the number of features in the current example.
*
* @return number of features as int
*/
virtual int32_t get_num_features();
/**
* Return the number of non-zero features in vector
*
* @return number of sparse features in vector
*/
virtual int32_t get_nnz_features_for_vector();
/**
* Return the feature type, depending on T.
*
* @return Feature type as EFeatureType
*/
virtual EFeatureType get_feature_type() const;
/**
* Return the feature class
*
* @return C_STREAMING_SPARSE
*/
virtual EFeatureClass get_feature_class() const;
/**
* Duplicate the object.
*
* @return a duplicate object as CFeatures*
*/
virtual CFeatures* duplicate() const;
/**
* Return the name.
*
* @return StreamingSparseFeatures
*/
virtual const char* get_name() const { return "StreamingSparseFeatures"; }
/**
* Return the number of vectors stored in this object.
*
* @return 1 if current_vector exists, else 0.
*/
virtual int32_t get_num_vectors() const;
private:
/**
* Initializes members to null values.
* current_length is set to -1.
*/
virtual void init();
/**
* Calls init, and also initializes the parser with the given args.
*
* @param file StreamingFile to read from
* @param is_labelled whether labelled or not
* @param size number of examples in the parser's ring
*/
virtual void init(CStreamingFile *file, bool is_labelled, int32_t size);
protected:
/// The parser object, which reads from input and returns parsed example objects.
CInputParser< SGSparseVectorEntry<T> > parser;
/// The current example's feature vector as an SGVector<T>
SGSparseVector<T> current_sgvector;
/// The current vector index
index_t current_vec_index;
/// The current example's label.
float64_t current_label;
/// Number of features in current vector (as seen so far upto the current vector)
int32_t current_num_features;
};
}
#endif // _STREAMING_SPARSEFEATURES__H__
|