This file is indexed.

/usr/include/shogun/features/SparsePolyFeatures.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2010 Soeren Sonnenburg
 * Copyright (C) 2010 Berlin Institute of Technology
 */
#ifndef _SPARSEPOLYFEATURES__H__
#define _SPARSEPOLYFEATURES__H__

#include <shogun/lib/common.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/SparseFeatures.h>

namespace shogun
{
/** @brief implement DotFeatures for the polynomial kernel
 *
 * see DotFeatures for further discription
 *
 */
class CSparsePolyFeatures : public CDotFeatures
{
	public:
		/** default constructor  */
		CSparsePolyFeatures();

		/** constructor
		 *
		 * @param feat real features
		 * @param degree degree of the polynomial kernel
		 *					(only degree 2 & 3 are supported)
		 * @param normalize normalize kernel
		 * @param hash_bits number of bits in hashd feature space
		 */
		CSparsePolyFeatures(CSparseFeatures<float64_t>* feat, int32_t degree, bool normalize, int32_t hash_bits);

		virtual ~CSparsePolyFeatures();

		/** copy constructor
		 *
		 * not implemented!
		 *
		 * @param orig original PolyFeature
		 */
		CSparsePolyFeatures(const CSparsePolyFeatures & orig);

		/** get dimensions of feature space
		 *
		 * @return dimensions of feature space
		 */
		virtual int32_t get_dim_feature_space() const;

		/** get number of non-zero features in vector
		 *
		 * @param num index of vector
		 * @return number of non-zero features in vector
		 */
		virtual int32_t get_nnz_features_for_vector(int32_t num);

		/** get feature type
		 *
		 * @return feature type
		 */
		virtual EFeatureType get_feature_type() const;

		/** get feature class
		 *
		 * @return feature class
		 */
		virtual EFeatureClass get_feature_class() const;

		/** get number of vectors
		 *
		 * @return number of vectors
		 */
		virtual int32_t get_num_vectors() const;

		/** compute dot product between vector1 and vector2,
		 *  appointed by their indices
		 *
		 * @param vec_idx1 index of first vector
		 * @param df DotFeatures (of same kind) to compute dot product with
		 * @param vec_idx2 index of second vector
		 */
		virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2);

		#ifndef DOXYGEN_SHOULD_SKIP_THIS
		/** iterator for weighted spectrum features */
		struct sparse_poly_feature_iterator
		{
			/** pointer to feature vector */
			uint16_t* vec;
			/** index of vector */
			int32_t vidx;
			/** length of vector */
			int32_t vlen;
			/** if we need to free the vector*/
			bool vfree;

			/** feature index */
			int32_t index;
		};
		#endif

		/** iterate over the non-zero features
		 *
		 * call get_feature_iterator first, followed by get_next_feature and
		 * free_feature_iterator to cleanup
		 *
		 * @param vector_index the index of the vector over whose components to
		 *			iterate over
		 * @return feature iterator (to be passed to get_next_feature)
		 */
		virtual void* get_feature_iterator(int32_t vector_index);

		/** iterate over the non-zero features
		 *
		 * call this function with the iterator returned by get_first_feature
		 * and call free_feature_iterator to cleanup
		 *
		 * @param index is returned by reference (-1 when not available)
		 * @param value is returned by reference
		 * @param iterator as returned by get_first_feature
		 * @return true if a new non-zero feature got returned
		 */
		bool get_next_feature(int32_t& index, float64_t& value, void* iterator);

		/** clean up iterator
		 * call this function with the iterator returned by get_first_feature
		 *
		 * @param iterator as returned by get_first_feature
		 */
		void free_feature_iterator(void* iterator);

		/** duplicate feature object
		 *
		 * @return feature object
		 */
		CFeatures* duplicate() const;

		/**
		 *
		 * @return name of class
		 */
		virtual const char* get_name() const { return "SparsePolyFeatures"; }

		/** compute dot product of vector with index arg1
		 *  with an given second vector
		 *
		 * @param vec_idx1 index of first vector
		 * @param vec2 second vector
		 * @param vec2_len length of second vector
		 */
		virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len);

		/** compute alpha*x+vec2
		 *
		 * @param alpha alpha
		 * @param vec_idx1 index of first vector x
		 * @param vec2 vec2
		 * @param vec2_len length of vec2
		 * @param abs_val if true add the absolute value
		 */
		virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1, float64_t* vec2, int32_t vec2_len, bool abs_val=false);

	protected:
		/** store the norm of each training example */
		void store_normalization_values();

	protected:
		/** features in original space*/
		CSparseFeatures<float64_t>* m_feat;
		/** degree of the polynomial kernel */
		int32_t m_degree;
		/** normalize */
		bool m_normalize;
		/** dimensions of the input space */
		int32_t m_input_dimensions;
		/** dimensions of the feature space of the polynomial kernel */
		int32_t m_output_dimensions;
		/**store norm of each training example */
		float64_t* m_normalization_values;
		/** mask */
		uint32_t mask;
		/** number of bits in hash */
		int32_t m_hash_bits;
	private:
		/**Initialize parameters for serialization*/
		void init();

	private:
		/**length of norm for each traning example*/
		int32_t m_normalization_values_len;
};
}
#endif // _SPARSEPOLYFEATURES__H__