This file is indexed.

/usr/include/shogun/features/BinnedDotFeatures.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Copyright (C) 2012 Soeren Sonnenburg
 */

#ifndef _BINNED_DOTFEATURES_H___
#define _BINNED_DOTFEATURES_H___

#include <shogun/lib/common.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/features/DenseFeatures.h>

namespace shogun
{
	template <class T> class CDenseFeatures;

/** @brief The class BinnedDotFeatures contains a 0-1 conversion of features into bins.
 *
 * It is often useful to convert real valued features into 0-1 vectors by
 * defining a fixed set of bins and then filling all bins with 0 except the
 * bin into which the value falls, i.e.bin=1 iff
 * bin lower limit <= value < bin upper limit
 *
 * This class optionally allows to fill all bins with 1 up to the one with
 * value < bin upper limit when the fill flag is set.
 *
 * In addition one may choose to normalize vectors to have norm one (if the
 * norm one flag is set).
 *
 * Bins take the form of a matrix with as many columns as there are input
 * dimensions. Then each row vector contains the limits of the bins.
 *
 * Note that BinnedDotFeatures never *explicitly* compute the binned feature
 * representation but only overload the abstract dot/add methods in
 * CDotFeatures making them highly memory and computationally efficient.
 */
class CBinnedDotFeatures : public CDotFeatures
{
	public:
		/** constructor
		 *
		 * @param size cache size
		 */
		CBinnedDotFeatures(int32_t size=0);

		/** copy constructor */
		CBinnedDotFeatures(const CBinnedDotFeatures & orig);

		/** constructor
		 *
		 * @param sf CSimpleFeatureMatrix of type float64_t to convert into
		 * binned features
		 * @param bins a matrix with bins to compute binned features from
		 */
		CBinnedDotFeatures(CDenseFeatures<float64_t>* sf, SGMatrix<float64_t> bins);

		virtual ~CBinnedDotFeatures();

		/** obtain the dimensionality of the feature space
		 *
		 * (not mix this up with the dimensionality of the input space, usually
		 * obtained via get_num_features())
		 *
		 * @return dimensionality
		 */
		virtual int32_t get_dim_feature_space() const;

		/** compute dot product between vector1 and vector2,
		 * appointed by their indices
		 *
		 * @param vec_idx1 index of first vector
		 * @param df DotFeatures (of same kind) to compute dot product with
		 * @param vec_idx2 index of second vector
		 */
		virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2);

		/** compute dot product between vector1 and a dense vector
		 *
		 * @param vec_idx1 index of first vector
		 * @param vec2 pointer to real valued vector
		 * @param vec2_len length of real valued vector
		 */
		virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len);

		/** add vector 1 multiplied with alpha to dense vector2
		 *
		 * @param alpha scalar alpha
		 * @param vec_idx1 index of first vector
		 * @param vec2 pointer to real valued vector
		 * @param vec2_len length of real valued vector
		 * @param abs_val if true add the absolute value
		 */
		virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1, float64_t* vec2, int32_t vec2_len, bool abs_val=false);

		/** get number of non-zero features in vector
		 *
		 * (in case accurate estimates are too expensive overestimating is OK)
		 *
		 * @param num which vector
		 * @return number of sparse features in vector
		 */
		virtual int32_t get_nnz_features_for_vector(int32_t num);

		/** iterate over the non-zero features
		 *
		 * call get_feature_iterator first, followed by get_next_feature and
		 * free_feature_iterator to cleanup
		 *
		 * @param vector_index the index of the vector over whose components to
		 *			iterate over
		 * @return feature iterator (to be passed to get_next_feature)
		 */
		virtual void* get_feature_iterator(int32_t vector_index);

		/** iterate over the non-zero features
		 *
		 * call this function with the iterator returned by get_first_feature
		 * and call free_feature_iterator to cleanup
		 *
		 * @param index is returned by reference (-1 when not available)
		 * @param value is returned by reference
		 * @param iterator as returned by get_first_feature
		 * @return true if a new non-zero feature got returned
		 */
		virtual bool get_next_feature(int32_t& index, float64_t& value, void* iterator);

		/** clean up iterator
		 * call this function with the iterator returned by get_first_feature
		 *
		 * @param iterator as returned by get_first_feature
		 */
		virtual void free_feature_iterator(void* iterator);


		/** get the fill flag
		 *
		 * @return fill flag - if true bins are filled up to value v
		 */
		bool get_fill();

		/** set the fill flag
		 *
		 * @param fill - if fill is true bins are filled up to value v
		 */
		void set_fill(bool fill);

		/** get norm one flag
		 *
		 * @return norm one flag - if true vectors are normalized to have norm one
		 */
		bool get_norm_one();

		/** set norm one flag
		 *
		 * @param norm_one if norm_one is true vectors are normalized to have norm one
		 */
		void set_norm_one(bool norm_one);

		/** set features to convert to binned features
		 *
		 * @param features - features to convert to binned features
		 */
		void set_simple_features(CDenseFeatures<float64_t>* features);

		/** get features that are convert to binned features
		 *
		 * @return features - simple features object
		 */
		CDenseFeatures<float64_t>* get_simple_features();

		/** set bins
		 *
		 * bins have a matrix shape with as many column vectors as there are
		 * dimensions in the corresponding feature object. The column vector
		 * then contains the limits, e.g. linspace from minimum to maximum
		 * value of that dimension.
		 *
		 * @param bins - bins to convert features into
		 */
		void set_bins(SGMatrix<float64_t> bins);

		/** get current bins
		 *
		 * @return bins
		 */
		SGMatrix<float64_t> get_bins();

		/** Returns the name of the Object.
		 *  @return name "BinnedDotFeatures"
		 */
		virtual const char* get_name() const;

		/** duplicate feature object
		 *
		 * @return feature object
		 */
		virtual CFeatures* duplicate() const;

		/** get feature type
		 *
		 * @return feature type
		 */
		virtual EFeatureType get_feature_type() const;

		/** get feature class
		 *
		 * @return feature class
		 */
		virtual EFeatureClass get_feature_class() const;

		/** get number of examples/vectors
		 *
		 * @return number of examples/vectors
		 */
		virtual int32_t get_num_vectors() const;

	private:
		void init();

		/** test if feature matrix matches size of bins with limits
		 *
		 * @param vec2_len length of dense vector
		 */
		void assert_shape(int32_t vec2_len);

	protected:
		/// underlying features
		CDenseFeatures<float64_t>* m_features;

		/// bins with limits
		SGMatrix<float64_t> m_bins;

		/// fill up with 1's or flag just one column
		bool m_fill;

		/// normalize vectors to have norm one
		bool m_norm_one;
};
}
#endif // _BINNED_DOTFEATURES_H___