This file is indexed.

/usr/include/shogun/clustering/KMeans.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2008 Gunnar Raetsch
 * Written (W) 2007-2009 Soeren Sonnenburg
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _KMEANS_H__
#define _KMEANS_H__

#include <stdio.h>
#include <shogun/lib/common.h>
#include <shogun/io/SGIO.h>
#include <shogun/features/DenseFeatures.h>
#include <shogun/distance/Distance.h>
#include <shogun/machine/DistanceMachine.h>

namespace shogun
{
class CDistanceMachine;

/** training method */
enum EKMeansMethod
{
    KMM_MINI_BATCH,
    KMM_LLOYD
};

/** @brief KMeans clustering,  partitions the data into k (a-priori specified) clusters.
 *
 * It minimizes
 * \f[
 *  \sum_{i=1}^k\sum_{x_j\in S_i} (x_j-\mu_i)^2
 * \f]
 *
 * where \f$\mu_i\f$ are the cluster centers and \f$S_i,\;i=1,\dots,k\f$ are the index
 * sets of the clusters.
 *
 * Beware that this algorithm obtains only a <em>local</em> optimum.
 *
 * cf. http://en.wikipedia.org/wiki/K-means_algorithm
 *
 */
class CKMeans : public CDistanceMachine
{
	public:
		/** default constructor */
		CKMeans();

		/** constructor
		 *
		 * @param k parameter k
		 * @param d distance
		 * @param f train_method value
		 */
		CKMeans(int32_t k, CDistance* d, EKMeansMethod f);

		/** constructor
		 *
		 * @param k parameter k
		 * @param d distance
		 * @param kmeanspp true for using KMeans++ (default false)
		 * @param f train_method value
		 */
		CKMeans(int32_t k, CDistance* d, bool kmeanspp=false, EKMeansMethod f=KMM_LLOYD);

		/** constructor for supplying initial centers
		 * @param k_i parameter k
		 * @param d_i distance
		 * @param centers_i initial centers for KMeans algorithm
		 * @param f train_method value
		*/
		CKMeans(int32_t k_i, CDistance* d_i, SGMatrix<float64_t> centers_i, EKMeansMethod f=KMM_LLOYD);
		virtual ~CKMeans();


		MACHINE_PROBLEM_TYPE(PT_MULTICLASS)

		/** get classifier type
		 *
		 * @return classifier type KMEANS
		 */
		virtual EMachineType get_classifier_type() { return CT_KMEANS; }

		/** load distance machine from file
		 *
		 * @param srcfile file to load from
		 * @return if loading was successful
		 */
		virtual bool load(FILE* srcfile);

		/** save distance machine to file
		 *
		 * @param dstfile file to save to
		 * @return if saving was successful
		 */
		virtual bool save(FILE* dstfile);

		/** set k
		 *
		 * @param p_k new k
		 */
		void set_k(int32_t p_k);

		/** get k
		 *
		 * @return the parameter k
		 */
		int32_t get_k();

		/** set use_kmeanspp attribute
		 *
		 * @param kmpp true=>use KMeans++ false=>don't use KMeans++
		 */
		void set_use_kmeanspp(bool kmpp);

		/** get use_kmeanspp attribute
		 *
		 * @return use_kmeanspp true=>use KMeans++ false=>don't use KMeans++
		 */
		bool get_use_kmeanspp() const;

		/** set fixed centers
		 *
		 * @param fixed true if fixed cluster centers are intended
		 */
		void set_fixed_centers(bool fixed);

		/** get fixed centers
		 *
		 * @return whether boolean centers are to be used
		 */
		bool get_fixed_centers();

		/** set maximum number of iterations
		 *
		 * @param iter the new maximum
		 */
		void set_max_iter(int32_t iter);

		/** get maximum number of iterations
		 *
		 * @return maximum number of iterations
		 */
		float64_t get_max_iter();

		/** get radiuses
		 *
		 * @return radiuses
		 */
		SGVector<float64_t> get_radiuses();

		/** get centers
		 *
		 * @return cluster centers or empty matrix if no radiuses are there (not trained yet)
		 */
		SGMatrix<float64_t> get_cluster_centers();

		/** get dimensions
		 *
		 * @return number of dimensions
		 */
		int32_t get_dimensions();

		/** @return object name */
		virtual const char* get_name() const { return "KMeans"; }

		/** set the initial cluster centers 
		 *
		 * @param centers matrix with cluster centers (k colums, dim rows)
		 */
		virtual void set_initial_centers(SGMatrix<float64_t> centers);
		
		/** set training method
		 *
		 *@param f minibatch if mini-batch KMeans
		 */
		void set_train_method(EKMeansMethod f);

		/** get training method
		 *
		 *@return training method used - minibatch or lloyd
		 */
		EKMeansMethod get_train_method() const;

		/** set batch size for mini-batch KMeans
		 *
		 *@param b batch size int32_t(greater than 0)
		 */
		void set_mbKMeans_batch_size(int32_t b);

		/** get batch size for mini-batch KMeans
		 *
		 *@return batch size
		 */
		int32_t get_mbKMeans_batch_size() const;

		/** set no. of iterations for mini-batch KMeans
		 *
		 *@param t no. of iterations int32_t(greater than 0)
		 */
		void set_mbKMeans_iter(int32_t t);

		/** get no. of iterations for mini-batch KMeans
		 *
		 *@return no. of iterations
		 */
		int32_t get_mbKMeans_iter() const;

		/** set batch size and no. of iteration for mini-batch KMeans
		 *
		 *@param b batch size
		 *@param t no. of iterations
		 */
		void set_mbKMeans_params(int32_t b, int32_t t);

	private:
		/** train k-means
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

		/** Ensures cluster centers are in lhs of underlying distance */
		virtual void store_model_features();

		virtual bool train_require_labels() const { return false; }

		/** kmeans++ algorithm to initialize cluster centers
		* 
		* @return initial cluster centers: matrix (k columns, dim rows)
		*/	
		SGMatrix<float64_t> kmeanspp();
		void init();

		/** algorithm to initialize random cluster centers
		* 
		* @return initial cluster centers: matrix (k columns, dim rows)
		*/
		void set_random_centers(SGVector<float64_t> weights_set, SGVector<int32_t> ClList, int32_t XSize);
		void set_initial_centers(SGVector<float64_t> weights_set, 
					SGVector<int32_t> ClList, int32_t XSize);
		void compute_cluster_variances();

	private:
		/// maximum number of iterations
		int32_t max_iter;

		/// whether to keep cluster centers fixed or not
		bool fixed_centers;

		/// the k parameter in KMeans
		int32_t k;

		/// number of dimensions
		int32_t dimensions;

		/// radi of the clusters (size k)
		SGVector<float64_t> R;

		///initial centers supplied
		SGMatrix<float64_t> mus_initial;
		
		///flag to check if kmeans++ has to be used
		bool use_kmeanspp;
	
		///batch size for mini-batch KMeans
		int32_t batch_size;

		///number of iterations for mini-batch KMeans
		int32_t minib_iter;

		/// temp variable for cluster centers
		SGMatrix<float64_t> mus;

		/// set minibatch to use mini-batch KMeans
		EKMeansMethod train_method;
};
}
#endif