This file is indexed.

/usr/include/shogun/classifier/svm/SVMOcas.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2007-2009 Vojtech Franc
 * Written (W) 2007-2009 Soeren Sonnenburg
 * Copyright (C) 2007-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _SVMOCAS_H___
#define _SVMOCAS_H___

#include <shogun/lib/common.h>
#include <shogun/machine/LinearMachine.h>
#include <shogun/lib/external/libocas.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/labels/Labels.h>

namespace shogun
{
#ifndef DOXYGEN_SHOULD_SKIP_THIS
enum E_SVM_TYPE
{
	SVM_OCAS = 0,
	SVM_BMRM = 1
};
#endif

/** @brief class SVMOcas */
class CSVMOcas : public CLinearMachine
{
	public:

		/** problem type */
		MACHINE_PROBLEM_TYPE(PT_BINARY);

		/** default constructor  */
		CSVMOcas();

		/** constructor
		 *
		 * @param type a E_SVM_TYPE
		 */
		CSVMOcas(E_SVM_TYPE type);

		/** constructor
		 *
		 * @param C constant C
		 * @param traindat training features
		 * @param trainlab labels for training features
		 */
		CSVMOcas(
			float64_t C, CDotFeatures* traindat,
			CLabels* trainlab);
		virtual ~CSVMOcas();

		/** get classifier type
		 *
		 * @return classifier type SVMOCAS
		 */
		virtual EMachineType get_classifier_type() { return CT_SVMOCAS; }

		/** set C
		 *
		 * @param c_neg new C constant for negatively labeled examples
		 * @param c_pos new C constant for positively labeled examples
		 *
		 */
		inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }

		/** get C1
		 *
		 * @return C1
		 */
		inline float64_t get_C1() { return C1; }

		/** get C2
		 *
		 * @return C2
		 */
		inline float64_t get_C2() { return C2; }

		/** set epsilon
		 *
		 * @param eps new epsilon
		 */
		inline void set_epsilon(float64_t eps) { epsilon=eps; }

		/** get epsilon
		 *
		 * @return epsilon
		 */
		inline float64_t get_epsilon() { return epsilon; }

		/** set if bias shall be enabled
		 *
		 * @param enable_bias if bias shall be enabled
		 */
		inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }

		/** check if bias is enabled
		 *
		 * @return if bias is enabled
		 */
		inline bool get_bias_enabled() { return use_bias; }

		/** set buffer size
		 *
		 * @param sz buffer size
		 */
		inline void set_bufsize(int32_t sz) { bufsize=sz; }

		/** get buffer size
		 *
		 * @return buffer size
		 */
		inline int32_t get_bufsize() { return bufsize; }

		/** compute the primal objective value
		 *
		 * @return the primal objective
		 */
		virtual float64_t compute_primal_objective() const;

	protected:
		/** compute W
		 *
		 * @param sq_norm_W square normed W
		 * @param dp_WoldW dp W old W
		 * @param alpha alpha
		 * @param nSel nSel
		 * @param ptr ptr
		 */
		static void compute_W(
			float64_t *sq_norm_W, float64_t *dp_WoldW, float64_t *alpha,
			uint32_t nSel, void* ptr);

		/** update W
		 *
		 * @param t t
		 * @param ptr ptr
		 * @return something floaty
		 */
		static float64_t update_W(float64_t t, void* ptr );

		/** add new cut
		 *
		 * @param new_col_H new col H
		 * @param new_cut new cut
		 * @param cut_length length of cut
		 * @param nSel nSel
		 * @param ptr ptr
		 */
		static int add_new_cut(
			float64_t *new_col_H, uint32_t *new_cut, uint32_t cut_length,
			uint32_t nSel, void* ptr );

		/** compute output
		 *
		 * @param output output
		 * @param ptr ptr
		 */
		static int compute_output( float64_t *output, void* ptr );

		/** sort
		 *
		 * @param vals vals
		 * @param data data
		 * @param size size
		 */
		static int sort( float64_t* vals, float64_t* data, uint32_t size);

		/** print nothing */
		static inline void print(ocas_return_value_T value)
		{
			  return;
		}

	protected:
		/** train SVM classifier
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL);

		/** @return object name */
		inline const char* get_name() const { return "SVMOcas"; }
	private:
		void init();

	protected:
		/** if bias is used */
		bool use_bias;
		/** buffer size */
		int32_t bufsize;
		/** C1 */
		float64_t C1;
		/** C2 */
		float64_t C2;
		/** epsilon */
		float64_t epsilon;
		/** method */
		E_SVM_TYPE method;

		/** old W */
		float64_t* old_w;
		/** old bias */
		float64_t old_bias;
		/** nDim big */
		float64_t* tmp_a_buf;
		/** labels */
		SGVector<float64_t> lab;

		/** sparse representation of
		 * cutting planes */
		float64_t** cp_value;
		/** cutting plane index */
		uint32_t** cp_index;
		/** cutting plane dimensions */
		uint32_t* cp_nz_dims;
		/** bias dimensions */
		float64_t* cp_bias;

		/** primal objective */
		float64_t primal_objective;
};
}
#endif