/usr/include/shark/Rng/Cauchy.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | /*!
*
*
* \brief Standard Cauchy distribution
*
*
*
* \author O. Krause
* \date 2010-01-01
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_RNG_CAUCHY_H
#define SHARK_RNG_CAUCHY_H
#include <shark/Core/Math.h>
#include <shark/Rng/Rng.h>
#include <boost/random.hpp>
#include <boost/random/cauchy_distribution.hpp>
#include <cmath>
namespace shark{
/*!
* \brief Cauchy distribution
*
* This class is a thin wrapper for the boost::cauchy_distribution class.
* The %Cauchy distribution (aka "Lorentzian") is defined by:
*
* \f$
* f(x) = \frac{1}{\pi \sigma (1 + \left[\frac {(x-x_0)} \sigma\right]^2 )}
* \f$
*
* <br>
* The %Cauchy distribution is important as an example of a pathological
* case. The %Cauchy distribution looks similar to a Normal distribution,
* but has much heavier tails. When studying hypothesis tests that assume
* normality, seeing how the tests perform on data from a %Cauchy
* distribution is a good indicator of how sensitive the tests are to
* heavy-tail departures from normality. Likewise, it is a good check
* for robust techniques that are designed to work well under a wide
* variety of distributional assumptions.
*/
template<typename RngType = shark::DefaultRngType>
class Cauchy:public boost::variate_generator<RngType*,boost::cauchy_distribution<> >
{
private:
typedef boost::variate_generator<RngType*,boost::cauchy_distribution<> > Base;
public:
/*!
* \brief Creates a new %Cauchy random generator instance
*
*\param median the median of the distribution
*\param sigma the width of the distribution
*\param rng the used random number generator
*/
Cauchy(RngType& rng,double median=0,double sigma=1)
:Base(&rng,boost::cauchy_distribution<>(median,sigma))
{}
//! creates a cauchy distributed number using the preset parameters
using Base::operator();
/*!
*\brief creates a cauchy distributed number from parameters
*
*\param median the median of the distribution
*\param sigma the width of the distribution
*/
double operator()(double median,double sigma)
{
boost::cauchy_distribution<> dist(median,sigma);
return dist(Base::engine());
}
//! returns the current median of the distribution
double median()const
{
return Base::distribution().median();
}
//! returns the width of the distribution
double sigma()const
{
return Base::distribution().sigma();
}
//! sets the median of the distribution
//! \param newMedian the new value for the Median
void median(double newMedian)
{
Base::distribution()=boost::cauchy_distribution<>(newMedian,sigma());
}
//! sets the width of the distribution
//! \param newSigma the new value for sigma
void sigma(double newSigma)
{
Base::distribution()=boost::cauchy_distribution<>(median(),newSigma);
}
//! Returns the probability for the occurrence of random number "x".
//! \param x the point for which to calculate the propability
double p(double x)const {
return 1.0/(sigma()*M_PI*(1+shark::sqr((x-median())/sigma())));
}
};
//! Returns the entropy of the Cauchy distribution
template<typename RngType>
double entropy(const Cauchy<RngType> & distribution);
}
#endif
|