This file is indexed.

/usr/include/shark/ObjectiveFunctions/NegativeLogLikelihood.h is in libshark-dev 3.1.4+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*!
 * 
 *
 * \brief       Negative Log Likelihood error function
 * 
 * 
 *
 * \author      O.Krause
 * \date        2014
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_OBJECTIVEFUNCTIONS_NEGATIVE_LOG_LIKELIHOOD_H
#define SHARK_OBJECTIVEFUNCTIONS_NEGATIVE_LOG_LIKELIHOOD_H

#include <shark/Models/AbstractModel.h>
#include <shark/ObjectiveFunctions/AbstractObjectiveFunction.h>
#include <shark/Rng/GlobalRng.h>

#include <boost/range/algorithm_ext/iota.hpp>
#include <boost/range/algorithm/random_shuffle.hpp>
namespace shark{

/// \brief Computes the negative log likelihood of a dataset under a model
///
/// The negative log likelihood is defined as 
/// \f[ L(\theta) = -\frac 1 N \sum_{i=1}^N log(p_{\theta}(x_i)) \f]
/// where \f$ \theta \f$ is the vector of parameters of the model \f$ p \f$ and \f$ x \f$ are the
/// datapoints of the training set. Minimizing this
/// maximizes the probability of the datast under p. This error measure is
/// closely related to the Kulback-Leibler-Divergence.
///
/// For this error function, the model is only allowed to have a single output
/// - the probability of the sample. The distribution must be normalized as otherwise
/// the likeelihood does not mean anything. 
class NegativeLogLikelihood : public SingleObjectiveFunction
{
public:
	typedef UnlabeledData<RealVector> DatasetType;

	NegativeLogLikelihood(
		DatasetType const& data,
		AbstractModel<RealVector,RealVector>* model
	):mep_model(model),m_data(data){
		if(mep_model->hasFirstParameterDerivative())
			m_features |= HAS_FIRST_DERIVATIVE;
		m_features |= CAN_PROPOSE_STARTING_POINT;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "NegativeLogLikelihood"; }

	SearchPointType proposeStartingPoint() const{
		return mep_model->parameterVector();
	}
	
	std::size_t numberOfVariables()const{
		return mep_model->numberOfParameters();
	}

	ResultType eval(RealVector const& input) const{
		SIZE_CHECK(input.size() == numberOfVariables());
		m_evaluationCounter++;
		mep_model->setParameterVector(input);
		
		double error = 0;
		double minProb = 1e-100;//numerical stability is only guaranteed for lower bounded probabilities
		SHARK_PARALLEL_FOR(int i = 0; i < (int)m_data.numberOfBatches(); ++i){
			RealMatrix predictions = (*mep_model)(m_data.batch(i));
			SIZE_CHECK(predictions.size2() == 1);
			double logLikelihoodOfSamples = sum(log(max(predictions,minProb)));
			SHARK_CRITICAL_REGION{
				error += logLikelihoodOfSamples;
			}
		}
		error/=m_data.numberOfElements();//compute mean
		return -error;//negative log likelihood
	}
	ResultType evalDerivative( 
		SearchPointType const& input, 
		FirstOrderDerivative & derivative 
	) const{
		SIZE_CHECK(input.size() == numberOfVariables());
		m_evaluationCounter++;
		mep_model->setParameterVector(input);
		derivative.resize(input.size());
		derivative.clear();
		
		//compute partitioning on threads
		std::size_t numBatches = m_data.numberOfBatches();
		std::size_t numElements = m_data.numberOfElements();
		std::size_t numThreads = std::min(SHARK_NUM_THREADS,numBatches);
		//calculate optimal partitioning
		std::size_t batchesPerThread = numBatches/numThreads;
		std::size_t leftOver = numBatches - batchesPerThread*numThreads;
		double error = 0;
		double minProb = 1e-100;//numerical stability is only guaranteed for lower bounded probabilities
		SHARK_PARALLEL_FOR(int ti = 0; ti < (int)numThreads; ++ti){//MSVC does not support unsigned integrals in paralll loops
			std::size_t t = ti;
			//~ //get start and end index of batch-range
			std::size_t start = t*batchesPerThread+std::min(t,leftOver);
			std::size_t end = (t+1)*batchesPerThread+std::min(t+1,leftOver);
			
			//calculate error and derivative of the current thread
			FirstOrderDerivative threadDerivative(input.size(),0.0);
			double threadError = 0;
			boost::shared_ptr<State> state = mep_model->createState();
			RealVector batchDerivative;
			RealMatrix predictions;
			for(std::size_t i  = start; i != end; ++i){
				mep_model->eval(m_data.batch(i),predictions,*state);
				SIZE_CHECK(predictions.size2() == 1);
				threadError += sum(log(max(predictions,minProb)));
				//noalias(predictions) = elem_inv(predictions)
				//the below handls numeric instabilities...
				for(std::size_t j = 0; j != predictions.size1(); ++j){
					for(std::size_t k = 0; k != predictions.size2(); ++k){
						if(predictions(j,k) < minProb){
							predictions(j,k) = 0;
						}
						else{
							predictions(j,k) = 1.0/predictions(j,k);
						}
					}
				}
				mep_model->weightedParameterDerivative(
					m_data.batch(i),predictions,*state,batchDerivative
				);
				threadDerivative += batchDerivative;
			}
			
			//sum over all threads
			SHARK_CRITICAL_REGION{
				error += threadError;
				noalias(derivative) += threadDerivative;
			}
		}
		
		error /= numElements;
		derivative /= numElements;
		derivative *= -1;
		return -error;//negative log likelihood
	}

private:
	AbstractModel<RealVector,RealVector>* mep_model;
	UnlabeledData<RealVector> m_data;
};

}
#endif