/usr/include/shark/ObjectiveFunctions/KernelTargetAlignment.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | /*!
*
*
* \brief Kernel Target Alignment - a measure of alignment of a kernel Gram matrix with labels.
*
*
*
* \author T. Glasmachers, O.Krause
* \date 2010-2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_OBJECTIVEFUNCTIONS_KERNELTARGETALIGNMENT_H
#define SHARK_OBJECTIVEFUNCTIONS_KERNELTARGETALIGNMENT_H
#include <shark/ObjectiveFunctions/AbstractObjectiveFunction.h>
#include <shark/Data/Dataset.h>
#include <shark/Data/Statistics.h>
#include <shark/Models/Kernels/AbstractKernelFunction.h>
namespace shark{
/*!
* \brief Kernel Target Alignment - a measure of alignment of a kernel Gram matrix with labels.
*
* \par
* The Kernel Target Alignment (KTA) was originally proposed in the paper:<br/>
* <i>On Kernel-Target Alignment</i>. N. Cristianini, J. Shawe-Taylor,
* A. Elisseeff, J. Kandola. Innovations in Machine Learning, 2006.<br/>
* Here we provide a version with centering of the features as proposed
* in the paper:<br/>
* <i>Two-Stage Learning Kernel Algorithms</i>. C. Cortes, M. Mohri,
* A. Rostamizadeh. ICML 2010.<br/>
*
* \par
* The kernel target alignment is defined as
* \f[ \hat A = \frac{\langle K, y y^T \rangle}{\sqrt{\langle K, K \rangle \cdot \langle y y^T, y y^T \rangle}} \f]
* where K is the kernel Gram matrix of the data and y is the vector of
* +1/-1 valued labels. The outer product \f$ y y^T \f$ corresponds to
* an "ideal" Gram matrix corresponding to a kernel that maps
* the two classes each to a single point, thus minimizing within-class
* distance for fixed inter-class distance. The inner products denote the
* Frobenius product of matrices:
* http://en.wikipedia.org/wiki/Matrix_multiplication#Frobenius_product
*
* \par
* In kernel-based learning, the kernel Gram matrix K is of the form
* \f[ K_{i,j} = k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle \f]
* for a Mercer kernel function k and inputs \f$ x_i, x_j \f$. In this
* version of the KTA we use centered feature vectors. Let
* \f[ \psi(x_i) = \phi(x_i) - \frac{1}{\ell} \sum_{j=1}^{\ell} \phi(x_j) \f]
* denote the centered feature vectors, then the centered Gram matrix
* \f$ K^c \f$ is given by
* \f[ K^c_{i,j} = \langle \psi(x_i), \psi(x_j) \rangle = K_{i,j} - \frac{1}{\ell} \sum_{n=1}^\ell K_{i,n} + K_{j,n} + \frac{1}{\ell^2} \sum_{m,n=1}^\ell K_{n,m} \f]
* The alignment measure computed by this class is the exact same formula
* for \f$ \hat A \f$, but with \f$ K^c \f$ plugged in in place of $\f$ K \f$.
*
* \par
* KTA measures the Frobenius inner product between a kernel Gram matrix
* and this ideal matrix. The interpretation is that KTA measures how
* well a given kernel fits a classification problem. The actual measure
* is invariant under kernel rescaling.
* In Shark, objective functions are minimized by convention. Therefore
* the negative alignment \f$ - \hat A \f$ is implemented. The measure is
* extended for multi-class problems by using prototype vectors instead
* of scalar labels.
*
* \par
* The following properties of KTA are important from a model selection
* point of view: it is relatively fast and easy to compute, it is
* differentiable w.r.t. the kernel function, and it is independent of
* the actual classifier.
*
* \par
* The following notation is used in several of the methods of the class.
* \f$ K^c \f$ denotes the centered Gram matrix, y is the vector of labels,
* Y is the outer product of this vector with itself, k is the row
* (or column) wise average of the uncentered Gram matrix K, my is the
* label average, and u is the vector of all ones, and \f$ \ell \f$ is the
* number of data points, and thus the size of the Gram matrix.
*/
template<class InputType = RealVector,class LabelType = unsigned int>
class KernelTargetAlignment : public SingleObjectiveFunction
{
private:
typedef typename Batch<LabelType>::type BatchLabelType;
public:
/// \brief Construction of the Kernel Target Alignment (KTA) from a kernel object.
///
/// Don't forget to provide a data set with the setDataset method
/// before using the object.
KernelTargetAlignment(
LabeledData<InputType, LabelType> const& dataset,
AbstractKernelFunction<InputType>* kernel
){
SHARK_CHECK(kernel != NULL, "[KernelTargetAlignment] kernel must not be NULL");
mep_kernel = kernel;
m_features|=HAS_VALUE;
m_features|=CAN_PROPOSE_STARTING_POINT;
if(mep_kernel -> hasFirstParameterDerivative())
m_features|=HAS_FIRST_DERIVATIVE;
m_data = dataset;
m_elements = dataset.numberOfElements();
setupY(dataset.labels());
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "KernelTargetAlignment"; }
/// Return the current kernel parameters as a starting point for an optimization run.
SearchPointType proposeStartingPoint() const {
return mep_kernel -> parameterVector();
}
std::size_t numberOfVariables()const{
return mep_kernel->numberOfParameters();
}
/// \brief Evaluate the (centered, negative) Kernel Target Alignment (KTA).
///
/// See the class description for more details on this computation.
double eval(RealVector const& input) const{
mep_kernel->setParameterVector(input);
return -evaluateKernelMatrix().error;
}
/// \brief Compute the derivative of the KTA as a function of the kernel parameters.
///
/// It holds:
/// \f[ \langle K^c, K^c \rangle = \langle K,K \rangle -2 \ell \langle k,k \rangle + mk^2 \ell^2 \\
/// (\langle K^c, K^c \rangle )' = 2 \langle K,K' \rangle -4\ell \langle k, \frac{1}{\ell} \sum_j K'_ij \rangle +2 \ell^2 mk \sum_ij 1/(\ell^2) K'_ij \\
/// = 2 \langle K,K' \rangle -4 \langle k, \sum_j K'_ij \rangle + 2 mk \sum_ij K_ij \\
/// = 2 \langle K,K' \rangle -4 \langle k u^T, K' \rangle + 2 mk \langle u u^T, K' \rangle \\
/// = 2\langle K -2 k u^T + mk u u^T, K' \rangle ) \\
/// \langle Y, K^c \rangle = \langle Y, K \rangle - 2 n \langle y, k \rangle + n^2 my mk \\
/// (\langle Y , K^c \rangle )' = \langle Y -2 y u^T + my u u^T, K' \rangle \f]
/// now the derivative is computed from this values in a second sweep over the data:
/// we get:
/// \f[ \hat A' = 1/\langle K^c,K^c \rangle ^{3/2} (\langle K^c,K^c \rangle (\langle Y,K^c \rangle )' - 0.5*\langle Y, K^c \rangle (\langle K^c , K^c \rangle )') \\
/// = 1/\langle K^c,K^c \rangle ^{3/2} \langle \langle K^c,K^c \rangle (Y -2 y u^T + my u u^T)- \langle Y, K^c \rangle (K -2 k u^T+ mk u u^T),K' \rangle \\
/// = 1/\langle K^c,K^c \rangle ^{3/2} \langle W,K' \rangle \f]
///reordering rsults in
/// \f[ W= \langle K^c,K^c \rangle Y - \langle Y, K^c \rangle K \\
/// - 2 (\langle K^c,K^c \rangle y - \langle Y, K^c \rangle k) u^T \\
/// + (\langle K^c,K^c \rangle my - \langle Y, K^c \rangle mk) u u^T \f]
/// where \f$ K' \f$ is the derivative of K with respct of the kernel parameters.
ResultType evalDerivative( const SearchPointType & input, FirstOrderDerivative & derivative ) const {
mep_kernel->setParameterVector(input);
// the drivative is calculated in two sweeps of the data. first the required statistics
// \langle K^c,K^c \rangle , mk and k are evaluated exactly as in eval
KernelMatrixResults results = evaluateKernelMatrix();
std::size_t parameters = mep_kernel->numberOfParameters();
derivative.resize(parameters);
derivative.clear();
SHARK_PARALLEL_FOR(int i = 0; i < (int)m_data.numberOfBatches(); ++i){
std::size_t startX = 0;
for(int j = 0; j != i; ++j){
startX+= size(m_data.batch(j));
}
RealVector threadDerivative(parameters,0.0);
RealVector blockDerivative;
boost::shared_ptr<State> state = mep_kernel->createState();
RealMatrix blockK;//block of the KernelMatrix
RealMatrix blockW;//block of the WeightMatrix
std::size_t startY = 0;
for(int j = 0; j <= i; ++j){
mep_kernel->eval(m_data.batch(i).input,m_data.batch(j).input,blockK,*state);
mep_kernel->weightedParameterDerivative(
m_data.batch(i).input,m_data.batch(j).input,
generateDerivativeWeightBlock(i,j,startX,startY,blockK,results),//takes symmetry into account
*state,
blockDerivative
);
noalias(threadDerivative) += blockDerivative;
startY += size(m_data.batch(j));
}
SHARK_CRITICAL_REGION{
noalias(derivative) += threadDerivative;
}
}
derivative *= -1;
return -results.error;
}
private:
AbstractKernelFunction<InputType>* mep_kernel; ///< kernel function
LabeledData<InputType,LabelType> m_data; ///< data points
RealVector m_columnMeanY; ///< mean label vector
double m_meanY; ///< mean label element
std::size_t m_numberOfClasses; ///< number of classes
std::size_t m_elements; ///< number of data points
struct KernelMatrixResults{
RealVector k;
double KcKc;
double YcKc;
double error;
double meanK;
};
void setupY(Data<unsigned int>const& labels){
//preprocess Y so calculate column means and overall mean
//the most efficient way to do this is via the class counts
std::vector<std::size_t> classCount = classSizes(labels);
m_numberOfClasses = classCount.size();
RealVector classMean(m_numberOfClasses);
double dm1 = m_numberOfClasses-1.0;
for(std::size_t i = 0; i != m_numberOfClasses; ++i){
classMean(i) = classCount[i]-(m_elements-classCount[i])/dm1;
classMean /= m_elements;
}
m_columnMeanY.resize(m_elements);
for(std::size_t i = 0; i != m_elements; ++i){
m_columnMeanY(i) = classMean(labels.element(i));
}
m_meanY=sum(m_columnMeanY)/m_elements;
}
void setupY(Data<RealVector>const& labels){
RealVector meanLabel = mean(labels);
m_columnMeanY.resize(m_elements);
for(std::size_t i = 0; i != m_elements; ++i){
m_columnMeanY(i) = inner_prod(labels.element(i),meanLabel);
}
m_meanY=sum(m_columnMeanY)/m_elements;
}
/// Update a sub-block of the matrix \f$ \langle Y, K^x \rangle \f$.
double updateYKc(UIntVector const& labelsi,UIntVector const& labelsj, RealMatrix const& block)const{
std::size_t blockSize1 = labelsi.size();
std::size_t blockSize2 = labelsj.size();
//todo optimize the i=j case
double result = 0;
double dm1 = m_numberOfClasses-1.0;
for(std::size_t k = 0; k != blockSize1; ++k){
for(std::size_t l = 0; l != blockSize2; ++l){
if(labelsi(k) == labelsj(l))
result += block(k,l);
else
result -= block(k,l)/dm1;
}
}
return result;
}
/// Update a sub-block of the matrix \f$ \langle Y, K^x \rangle \f$.
double updateYKc(RealMatrix const& labelsi,RealMatrix const& labelsj, RealMatrix const& block)const{
std::size_t blockSize1 = labelsi.size1();
std::size_t blockSize2 = labelsj.size1();
//todo optimize the i=j case
double result = 0;
for(std::size_t k = 0; k != blockSize1; ++k){
for(std::size_t l = 0; l != blockSize2; ++l){
double y_kl = inner_prod(row(labelsi,k),row(labelsj,l));
result += y_kl*block(k,l);
}
}
return result;
}
void computeBlockY(UIntVector const& labelsi,UIntVector const& labelsj, RealMatrix& blockY)const{
std::size_t blockSize1 = labelsi.size();
std::size_t blockSize2 = labelsj.size();
double dm1 = m_numberOfClasses-1.0;
for(std::size_t k = 0; k != blockSize1; ++k){
for(std::size_t l = 0; l != blockSize2; ++l){
if( labelsi(k) == labelsj(l))
blockY(k,l) = 1;
else
blockY(k,l) = -1.0/dm1;
}
}
}
void computeBlockY(RealMatrix const& labelsi,RealMatrix const& labelsj, RealMatrix& blockY)const{
std::size_t blockSize1 = labelsi.size1();
std::size_t blockSize2 = labelsj.size1();
for(std::size_t k = 0; k != blockSize1; ++k){
for(std::size_t l = 0; l != blockSize2; ++l){
blockY(k,l) = inner_prod(row(labelsi,k),row(labelsj,l));
}
}
}
/// Compute a sub-block of the matrix
/// \f[ W = \langle K^c, K^c \rangle Y - \langle Y, K^c \rangle K -2 (\langle K^c, K^c \rangle y - \langle Y, K^c \rangle k) u^T + (\langle K^c, K^c \rangle my - \langle Y, K^c \rangle mk) u u^T \f]
RealMatrix generateDerivativeWeightBlock(
std::size_t i, std::size_t j,
std::size_t start1, std::size_t start2,
RealMatrix const& blockK,
KernelMatrixResults const& matrixStatistics
)const{
std::size_t blockSize1 = size(m_data.batch(i));
std::size_t blockSize2 = size(m_data.batch(j));
//double n = m_elements;
double KcKc = matrixStatistics.KcKc;
double YcKc = matrixStatistics.YcKc;
double meanK = matrixStatistics.meanK;
RealMatrix blockW(blockSize1,blockSize2);
//first calculate \langle Kc,Kc \rangle Y.
computeBlockY(m_data.batch(i).label,m_data.batch(j).label,blockW);
blockW *= KcKc;
//- \langle Y,K^c \rangle K
blockW-=YcKc*blockK;
// -2(\langle Kc,Kc \rangle y -\langle Y, K^c \rangle k) u^T
// implmented as: -(\langle K^c,K^c \rangle y -2\langle Y, K^c \rangle k) u^T -u^T(\langle K^c,K^c \rangle y -2\langle Y, K^c \rangle k)^T
//todo find out why this is correct and the calculation above is not.
blockW-=repeat(subrange(KcKc*m_columnMeanY - YcKc*matrixStatistics.k,start2,start2+blockSize2),blockSize1);
blockW-=trans(repeat(subrange(KcKc*m_columnMeanY - YcKc*matrixStatistics.k,start1,start1+blockSize1),blockSize2));
// + (\langle Kc,Kc \rangle my-2\langle Y, Kc \rangle mk) u u^T
blockW+= KcKc*m_meanY-YcKc*meanK;
blockW /= KcKc*std::sqrt(KcKc);
//std::cout<<blockW<<std::endl;
//symmetry
if(i != j)
blockW *= 2.0;
return blockW;
}
/// \brief Evaluate the centered kernel Gram matrix.
///
/// The computation is as follows. By means of a
/// number of identities it holds
/// \f[ \langle K^c, K^c \rangle = \\
/// \langle K^c, K^c \rangle = \langle K,K \rangle -2n\langle k,k \rangle +mk^2n^2 \\
/// \langle K^c, Y \rangle = \langle K, Y \rangle - 2 n \langle k, y \rangle + n^2 mk my \f]
/// where k is the row mean over K and y the row mean over y, mk, my the total means of K and Y
/// and n the number of elements
KernelMatrixResults evaluateKernelMatrix()const{
//it holds
// \langle K^c,K^c \rangle = \langle K,K \rangle -2n\langle k,k \rangle +mk^2n^2
// \langle K^c,Y \rangle = \langle K, Y \rangle - 2 n \langle k, y \rangle + n^2 mk my
// where k is the row mean over K and y the row mean over y, mk, my the total means of K and Y
// and n the number of elements
double KK = 0; //stores \langle K,K \rangle
double YKc = 0; //stores \langle Y,K^c \rangle
RealVector k(m_elements,0.0);//stores the row/column means of K
SHARK_PARALLEL_FOR(int i = 0; i < (int)m_data.numberOfBatches(); ++i){
std::size_t startRow = 0;
for(int j = 0; j != i; ++j){
startRow+= size(m_data.batch(j));
}
std::size_t rowSize = size(m_data.batch(i));
double threadKK = 0;
double threadYKc = 0;
RealVector threadk(m_elements,0.0);
std::size_t startColumn = 0; //starting column of the current block
for(int j = 0; j <= i; ++j){
std::size_t columnSize = size(m_data.batch(j));
RealMatrix blockK = (*mep_kernel)(m_data.batch(i).input,m_data.batch(j).input);
if(i == j){
threadKK += frobenius_prod(blockK,blockK);
subrange(threadk,startColumn,startColumn+columnSize)+=sum_rows(blockK);//update sum_rows(K)
threadYKc += updateYKc(m_data.batch(i).label,m_data.batch(j).label,blockK);
}
else{//use symmetry ok K
threadKK += 2.0 * frobenius_prod(blockK,blockK);
subrange(threadk,startColumn,startColumn+columnSize)+=sum_rows(blockK);
subrange(threadk,startRow,startRow+rowSize)+=sum_columns(blockK);//symmetry: block(j,i)
threadYKc += 2.0 * updateYKc(m_data.batch(i).label,m_data.batch(j).label,blockK);
}
startColumn+=columnSize;
}
SHARK_CRITICAL_REGION{
KK += threadKK;
YKc +=threadYKc;
noalias(k) +=threadk;
}
}
//calculate the error
double n = m_elements;
k /= n;//means
double meanK = sum(k)/n;
double n2 = sqr(n);
double YcKc = YKc-2.0*n*inner_prod(k,m_columnMeanY)+n2*m_meanY*meanK;
double KcKc = KK - 2.0*n*inner_prod(k,k)+n2*sqr(meanK);
KernelMatrixResults results;
results.k=k;
results.YcKc = YcKc;
results.KcKc = KcKc;
results.meanK = meanK;
results.error = YcKc/std::sqrt(KcKc);
return results;
}
};
}
#endif
|