/usr/include/shark/ObjectiveFunctions/AbstractObjectiveFunction.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | //===========================================================================
/*!
*
*
* \brief AbstractObjectiveFunction
*
*
* \author T.Voss, T. Glasmachers, O.Krause
* \date 2010-2011
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_OBJECTIVEFUNCTIONS_ABSTRACTOBJECTIVEFUNCTION_H
#define SHARK_OBJECTIVEFUNCTIONS_ABSTRACTOBJECTIVEFUNCTION_H
#include <shark/Core/INameable.h>
#include <shark/Core/Exception.h>
#include <shark/Core/Flags.h>
#include <shark/LinAlg/Base.h>
#include <shark/ObjectiveFunctions/AbstractConstraintHandler.h>
namespace shark {
/// \brief Super class of all objective functions for optimization and learning.
/// \par
/// The AbstractObjectiveFunction template class is the most general
/// interface for a function to be minimized or maximized by an
/// optimizer. It subsumes many more specialized classes,
/// ranging from classical test problems in evolutionary algorithms to
/// data-dependent objective functions in supervised learning. This
/// interface allows all general purpose optimization procedures to be
/// used as model training algorithms in a learning task, with
/// applications ranging from training of neural networks to direct
/// policy search in reinforcement learning.
/// AbstractObjectiveFunction offers a rich interface to support
/// different types of optimizers. Since not every objective function meets
/// every requirement, a flag system exists which tells the optimizer
/// which features are available. These are:
/// HAS_VALUE: The function can be evaluated. If not set, evalDerivative returns a meaningless
/// value (for example std::numeric_limits<double>::quiet_nan());
/// HAS_FIRST_DERIVATIVE: evalDerivative can be called for the FirstOrderDerivative.
/// The Derivative is defined and as exact as possible;
/// HAS_SECOND_DERIVATIVE: evalDerivative can be called for the second derivative.
/// It is defined and non-zero;
/// IS_CONSTRAINED_FEATURE: The function has constraints and isFeasible might return false;
/// CAN_PROPOSE_STARTING_POINT: the function can return a possibly randomized starting point;
/// CAN_PROVIDE_CLOSEST_FEASIBLE: if the function is constrained, closest feasible can be
/// called to construct a feasible point.
/// Calling the derivatives, proposeStartingPoint or closestFeasible when the flags are not set
/// will throw an exception.
/// The features can be queried using the method features() as in
/// if(!(f.features()&Function::HAS_VALUE))
/// \tparam PointType The search space the function is defined upon.
/// \tparam ResultT The objective space the function is defined upon.
template <typename PointType, typename ResultT>
class AbstractObjectiveFunction : public INameable{
public:
typedef PointType SearchPointType;
typedef ResultT ResultType;
typedef SearchPointType FirstOrderDerivative;
struct SecondOrderDerivative {
RealVector gradient;
RealMatrix hessian;
};
/// \brief List of features that are supported by an implementation.
enum Feature {
HAS_VALUE = 1, ///< The function can be evaluated and evalDerivative returns a meaningless value (for example std::numeric_limits<double>::quiet_nan()).
HAS_FIRST_DERIVATIVE = 2, ///< The method evalDerivative is implemented for the first derivative and returns a sensible value.
HAS_SECOND_DERIVATIVE = 4, ///< The method evalDerivative is implemented for the second derivative and returns a sensible value.
CAN_PROPOSE_STARTING_POINT = 8, ///< The function can propose a sensible starting point to search algorithms.
IS_CONSTRAINED_FEATURE = 16, ///< The objective function is constrained.
HAS_CONSTRAINT_HANDLER = 32, ///< The constraints are governed by a constraint handler which can be queried by getConstraintHandler()
CAN_PROVIDE_CLOSEST_FEASIBLE = 64, ///< If the function is constrained, the method closestFeasible is implemented and returns a "repaired" solution.
IS_THREAD_SAFE = 128 ///< can eval or evalDerivative be called in parallel?
};
/// This statement declares the member m_features. See Core/Flags.h for details.
SHARK_FEATURE_INTERFACE;
/// \brief returns whether this function can calculate it's function value
bool hasValue()const{
return m_features & HAS_VALUE;
}
/// \brief returns whether this function can calculate the first derivative
bool hasFirstDerivative()const{
return m_features & HAS_FIRST_DERIVATIVE;
}
/// \brief returns whether this function can calculate the second derivative
bool hasSecondDerivative()const{
return m_features & HAS_SECOND_DERIVATIVE;
}
/// \brief returns whether this function can propose a starting point.
bool canProposeStartingPoint()const{
return m_features & CAN_PROPOSE_STARTING_POINT;
}
/// \brief returns whether this function can return
bool isConstrained()const{
return m_features & IS_CONSTRAINED_FEATURE;
}
/// \brief returns whether this function can return
bool hasConstraintHandler()const{
return m_features & HAS_CONSTRAINT_HANDLER;
}
/// \brief Returns whether this function can calculate thee closest feasible to an infeasible point.
bool canProvideClosestFeasible()const{
return m_features & CAN_PROVIDE_CLOSEST_FEASIBLE;
}
/// \brief Returns true, when the function can be usd in parallel threads.
bool isThreadSafe()const{
return m_features & IS_THREAD_SAFE;
}
/// \brief Default ctor.
AbstractObjectiveFunction():m_evaluationCounter(0) {
m_features |=HAS_VALUE;
}
/// \brief Virtual destructor
virtual ~AbstractObjectiveFunction() {}
virtual void init() {
m_evaluationCounter=0;
}
/// \brief Accesses the number of variables
virtual std::size_t numberOfVariables() const=0;
virtual bool hasScalableDimensionality()const{
return false;
}
/// \brief Adjusts the number of variables if the function is scalable.
/// \param [in] numberOfVariables The new dimension.
virtual void setNumberOfVariables( std::size_t numberOfVariables ){
throw SHARKEXCEPTION("dimensionality of function is not scalable");
}
virtual std::size_t numberOfObjectives() const{
return 1;
}
virtual bool hasScalableObjectives()const{
return false;
}
/// \brief Adjusts the number of objectives if the function is scalable.
/// \param numberOfObjectives The new number of objectives to optimize for.
virtual void setNumberOfObjectives( std::size_t numberOfObjectives ){
throw SHARKEXCEPTION("dimensionality of function is not scaleable");
}
/// \brief Accesses the evaluation counter of the function.
std::size_t evaluationCounter() const {
return m_evaluationCounter;
}
/// \brief Returns the constraint handler of the function if it has one.
///
/// If the function does not offer a constraint handler, an exception is thrown.
AbstractConstraintHandler<SearchPointType> const& getConstraintHandler()const{
if(m_constraintHandler == NULL)
throw SHARKEXCEPTION("Objective Function does not have an constraint handler!");
return *m_constraintHandler;
}
/// \brief Tests whether a point in SearchSpace is feasible, e.g., whether the constraints are fulfilled.
/// \param [in] input The point to be tested for feasibility.
/// \return true if the point is feasible, false otherwise.
virtual bool isFeasible( const SearchPointType & input) const {
if(hasConstraintHandler()) return getConstraintHandler().isFeasible(input);
if(isConstrained())
throw SHARKEXCEPTION("[AbstractObjectiveFunction::isFasible] not overwritten, even though function is constrained");
return true;
}
/// \brief If supported, the supplied point is repaired such that it satisfies all of the function's constraints.
///
/// \param [in,out] input The point to be repaired.
///
/// \throws FeatureNotAvailableException in the default implementation.
virtual void closestFeasible( SearchPointType & input ) const {
if(!isConstrained()) return;
if(hasConstraintHandler()) return getConstraintHandler().closestFeasible(input);
SHARK_FEATURE_EXCEPTION(CAN_PROVIDE_CLOSEST_FEASIBLE);
}
/// \brief Proposes a starting point in the feasible search space of the function.
///
/// \return The generated starting point.
/// \throws FeatureNotAvailableException in the default implementation
/// and if a function does not support this feature.
virtual SearchPointType proposeStartingPoint()const {
if(hasConstraintHandler()&& getConstraintHandler().canGenerateRandomPoint()){
SearchPointType startingPoint;
getConstraintHandler().generateRandomPoint(startingPoint);
return startingPoint;
}
else{
SHARK_FEATURE_EXCEPTION(CAN_PROPOSE_STARTING_POINT);
}
}
/// \brief Evaluates the objective function for the supplied argument.
/// \param [in] input The argument for which the function shall be evaluated.
/// \return The result of evaluating the function for the supplied argument.
/// \throws FeatureNotAvailableException in the default implementation
/// and if a function does not support this feature.
virtual ResultType eval( const SearchPointType & input )const {
SHARK_FEATURE_EXCEPTION(HAS_VALUE);
}
/// \brief Evaluates the function. Useful together with STL-Algorithms like std::transform.
ResultType operator()( const SearchPointType & input ) const {
return eval(input);
}
/// \brief Evaluates the objective function and calculates its gradient.
/// \param [in] input The argument to eval the function for.
/// \param [out] derivative The derivate is placed here.
/// \return The result of evaluating the function for the supplied argument.
/// \throws FeatureNotAvailableException in the default implementation
/// and if a function does not support this feature.
virtual ResultType evalDerivative( const SearchPointType & input, FirstOrderDerivative & derivative )const {
SHARK_FEATURE_EXCEPTION(HAS_FIRST_DERIVATIVE);
}
/// \brief Evaluates the objective function and calculates its gradient.
/// \param [in] input The argument to eval the function for.
/// \param [out] derivative The derivate and the Hessian are placed here.
/// \return The result of evaluating the function for the supplied argument.
/// \throws FeatureNotAvailableException in the default implementation
/// and if a function does not support this feature.
virtual ResultType evalDerivative( const SearchPointType & input, SecondOrderDerivative & derivative )const {
SHARK_FEATURE_EXCEPTION(HAS_SECOND_DERIVATIVE);
}
protected:
mutable std::size_t m_evaluationCounter; ///< Evaluation counter, default value: 0.
AbstractConstraintHandler<SearchPointType> const* m_constraintHandler;
/// \brief helper function which is called to announce the presence of an constraint handler.
///
/// This function quries the propabilities of the handler and sts up the flags accordingly
void announceConstraintHandler(AbstractConstraintHandler<SearchPointType> const* handler){
SHARK_CHECK(handler != NULL, "[AbstractObjectiveFunction::AnnounceConstraintHandler] Handler is not allowed to be NULL");
m_constraintHandler = handler;
m_features |= IS_CONSTRAINED_FEATURE;
m_features |= HAS_CONSTRAINT_HANDLER;
if(handler->canGenerateRandomPoint())
m_features |=CAN_PROPOSE_STARTING_POINT;
if(handler->canProvideClosestFeasible())
m_features |= CAN_PROVIDE_CLOSEST_FEASIBLE;
}
};
typedef AbstractObjectiveFunction< RealVector, double > SingleObjectiveFunction;
typedef AbstractObjectiveFunction< RealVector, RealVector > MultiObjectiveFunction;
}
#endif
|