This file is indexed.

/usr/include/shark/Models/OneVersusOneClassifier.h is in libshark-dev 3.1.4+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//===========================================================================
/*!
 * 
 *
 * \brief       One-versus-one Classifier.
 * 
 * 
 *
 * \author      T. Glasmachers
 * \date        2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================

#ifndef SHARK_MODELS_ONEVERSUSONE_H
#define SHARK_MODELS_ONEVERSUSONE_H


#include <shark/Models/AbstractModel.h>


namespace shark {


///
/// \brief One-versus-one Classifier.
///
/// \par
/// The one-versus-one classifier combines a number of binary
/// classifiers to form a multi-class ensemble classifier.
/// In the one-versus-one model, there exists one binary
/// classifier for each pair of classes. The predictions of
/// all binary machines are combined with a simple voting
/// scheme.
///
/// \par
/// The classifier can be extended to handle more classes on
/// the fly, without a need for re-training the existing
/// binary models.
///
template <class InputType>
class OneVersusOneClassifier : public AbstractModel<InputType, unsigned int>
{
public:
	typedef AbstractModel<InputType, unsigned int> base_type;
	typedef AbstractModel<InputType, unsigned int> binary_classifier_type;
	typedef LabeledData<InputType, unsigned int> dataset_type;
	typedef typename base_type::BatchInputType BatchInputType;
	typedef typename base_type::BatchOutputType BatchOutputType;
	
	/// \brief Constructor
	OneVersusOneClassifier()
	: m_classes(1)
	{ }

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "OneVersusOneClassifier"; }


	/// get internal parameters of the model
	virtual RealVector parameterVector() const
	{
		std::size_t total = numberOfParameters();
		RealVector ret(total);
		std::size_t used = 0;
		for (std::size_t i=0; i<m_binary.size(); i++)
		{
			std::size_t n = m_binary[i]->numberOfParameters();
			RealVectorRange(ret, Range(used, used + n)) = m_binary[i]->parameterVector();
			used += n;
		}
		return ret;
	}

	/// set internal parameters of the model
	virtual void setParameterVector(RealVector const& newParameters) {
		std::size_t used = 0;
		for (std::size_t i=0; i<m_binary.size(); i++)
		{
			std::size_t n = m_binary[i]->numberOfParameters();
			m_binary[i]->setParameterVector(ConstRealVectorRange(newParameters, Range(used, used + n)));
			used += n;
		}
		SHARK_CHECK(used == newParameters.size(),
				"[OneVersusOneClassifier::setParameterVector] invalid number of parameters");
	}

	/// return the size of the parameter vector
	virtual std::size_t numberOfParameters() const
	{
		std::size_t ret = 0;
		for (std::size_t i=0; i<m_binary.size(); i++) 
			ret += m_binary[i]->numberOfParameters();
		return ret;
	}

	/// return number of classes
	unsigned int numberOfClasses() const
	{ return m_classes; }

	/// \brief Obtain binary classifier.
	///
	/// \par
	/// The method returns the binary classifier used to distinguish
	/// class_one from class_zero. The convention class_one > class_zero
	/// is used (the inverse classifier can be constructed from this one
	/// by flipping the labels). The binary classifier outputs a value
	/// of 1 for class_one and a value of zero for class_zero.
	binary_classifier_type const& binary(unsigned int class_one, unsigned int class_zero) const
	{
		SHARK_ASSERT(class_zero < class_one);
		SHARK_ASSERT(class_one < m_classes);
		unsigned int index = class_one * (class_zero - 1) / 2 + class_zero;
		return m_binary[index];
	}

	/// \brief Add binary classifiers for one more class to the model.
	///
	/// The parameter binmodels holds a vector of n binary classifiers,
	/// where n is the current number of classes. The i-th model is this
	/// list is supposed to output a value of 1 for class n and a value
	/// of 0 for class i when faced with the binary classification problem
	/// of separating class i from class n. Afterwards the model can
	/// predict the n+1 classes {0, ..., n}.
	void addClass(std::vector<binary_classifier_type*> const& binmodels)
	{
		SHARK_CHECK(binmodels.size() == m_classes, "[OneVersusOneClassifier::addClass] wrong number of binary models");
		m_classes++;
		m_binary.insert(m_binary.end(), binmodels.begin(), binmodels.end());
	}

	boost::shared_ptr<State> createState()const{
		return boost::shared_ptr<State>(new EmptyState());
	}

	using base_type::eval;
	/// One-versus-one prediction: evaluate all binary classifiers,
	/// collect their votes, and return the class with most votes.
	void eval(
		BatchInputType const & patterns, BatchOutputType& output, State& state
	)const{
		std::size_t numPatterns = size(patterns);
		output.resize(numPatterns);
		output.clear();
		
		//matrix storing the class histogram for all patterns
		UIntMatrix votes(numPatterns,m_classes);
		votes.clear();
		
		//stores the votes of a classifier distinguishing between classes c and e
		//for all patterns
		UIntVector bin(numPatterns);
		//accumulate histograms
		for (unsigned int i=0, c=0; c<m_classes; c++)
		{
			for (std::size_t e=0; e<c; e++, i++)
			{
				m_binary[i]->eval(patterns,bin);
				for(std::size_t p = 0; p != numPatterns; ++p){
					if (bin[p] == 0) 
						votes(p,e)++; 
					else 
						votes(p,c)++;
				}
				
			}
		}
		//find the maximum class for ever pattern
		for(std::size_t p = 0; p != numPatterns; ++p){
			for (unsigned int c=1; c < m_classes; c++){
				if (votes(p,c) > votes(p,output(p))) 
					output(p) = c;
			}
		}
	}

	/// from ISerializable, reads a model from an archive
	void read(InArchive& archive)
	{
		archive & m_classes;
		archive & m_binary;
	}

	/// from ISerializable, writes a model to an archive
	void write(OutArchive& archive) const
	{
		archive & m_classes;
		//TODO: O.K. mit be leaking memory!!!
		archive & m_binary;
	}

protected:
	unsigned int m_classes;                          ///< number of classes to be distinguished
	std::vector<binary_classifier_type*> m_binary;        ///< list of binary classifiers
};


}
#endif