/usr/include/shark/Models/Neurons.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | /*!
*
*
* \brief -
*
* \author O.Krause
* \date 2011
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef MODELS_NEURONS_H
#define MODELS_NEURONS_H
#include <shark/LinAlg/Base.h>
namespace shark{
namespace detail{
///\brief Baseclass for all Neurons. it defines y=operator(x) for evaluation and derivative(y) for the derivative of the sigmoid.
///
///You need to provide a public member function function() and functionDerivative() in the derived class.
///Those functions calculate value and derivative for a single input.
///Due to template magic, the neurons can either use vectors or matrices as input.
///Additionally, they avoid temporary values completely using ublas magic.
///Usage:
///struct Neuron:public NeuronBase<Neuron> {
/// double function(double x)const{return ...}
/// double functionDerivative(double y)const{return ...}
///};
template<class Derived>
//again, one step ahead using templates!
class NeuronBase{
private:
template<class T>
struct Function{
typedef T argument_type;
typedef argument_type result_type;
static const bool zero_identity = false;
Function(NeuronBase<Derived> const* self):m_self(static_cast<Derived const*>(self)){}
result_type operator()(argument_type x)const{
return m_self->function(x);
}
Derived const* m_self;
};
template<class T>
struct FunctionDerivative{
typedef T argument_type;
typedef argument_type result_type;
static const bool zero_identity = false;
FunctionDerivative(NeuronBase<Derived> const* self):m_self(static_cast<Derived const*>(self)){}
result_type operator()(argument_type x)const{
return m_self->functionDerivative(x);
}
Derived const* m_self;
};
public:
///for a given input vector, calculates the elementwise application of the sigmoid function defined by Derived.
template<class E>
blas::vector_unary<E, Function<typename E::value_type> > operator()(blas::vector_expression<E> const& x)const{
typedef Function<typename E::value_type> functor_type;
return blas::vector_unary<E, functor_type >(x,functor_type(this));
}
///for a given batch of input vectors, calculates the elementwise application of the sigmoid function defined by Derived.
template<class E>
blas::matrix_unary<E, Function<typename E::value_type> > operator()(blas::matrix_expression<E> const& x)const{
typedef Function<typename E::value_type> functor_type;
return blas::matrix_unary<E, functor_type >(x,functor_type(this));
}
///Calculates the elementwise application of the sigmoid function derivative defined by Derived.
///It's input is a matrix or vector of previously calculated neuron responses generated by operator()
template<class E>
blas::vector_unary<E, FunctionDerivative<typename E::value_type> > derivative(blas::vector_expression<E> const& x)const{
typedef FunctionDerivative<typename E::value_type> functor_type;
return blas::vector_unary<E, functor_type >(x,functor_type(this));
}
///Calculates the elementwise application of the sigmoid function derivative defined by Derived.
///It's input is a matrix or vector of previously calculated neuron responses generated by operator()
template<class E>
blas::matrix_unary<E, FunctionDerivative<typename E::value_type> > derivative(blas::matrix_expression<E> const& x)const{
typedef FunctionDerivative<typename E::value_type> functor_type;
return blas::matrix_unary<E, functor_type >(x,functor_type(this));
}
};
}
///\brief Neuron which computes the Logistic (logistic) function with range [0,1].
///
///The Logistic function is
///\f[ f(x)=\frac 1 {1+exp^(-x)}\f]
///it's derivative can be computed as
///\f[ f'(x)= 1-f(x)^2 \f]
struct LogisticNeuron : public detail::NeuronBase<LogisticNeuron>{
template<class T>
T function(T x)const{
return sigmoid(x);
}
template<class T>
T functionDerivative(T y)const{
return y * (1 - y);
}
};
///\brief Neuron which computes the hyperbolic tangenst with range [-1,1].
///
///The Tanh function is
///\f[ f(x)=\tanh(x) = \frac 2 {1+exp^(-2x)}-1 \f]
///it's derivative can be computed as
///\f[ f'(x)= f(x)(1-f(x)) \f]
struct TanhNeuron: public detail::NeuronBase<TanhNeuron>{
template<class T>
T function(T x)const{
return std::tanh(x);
}
template<class T>
T functionDerivative(T y)const{
return 1.0 - y*y;
}
};
///\brief Linear activation Neuron.
struct LinearNeuron: public detail::NeuronBase<LinearNeuron>{
template<class T>
T function(T x)const{
return x;
}
template<class T>
T functionDerivative(T y)const{
return 1.0;
}
};
///\brief Rectifier Neuron f(x) = max(0,x)
struct RectifierNeuron: public detail::NeuronBase<RectifierNeuron>{
template<class T>
T function(T x)const{
return std::max<T>(0,x);
}
template<class T>
T functionDerivative(T y)const{
if(y == 0)
return T(0);
return T(1);
}
};
///\brief Fast sigmoidal function, which does not need to compute an exponential function.
///
///It is defined as
///\f[ f(x)=\frac x {1+|x|}\f]
///it's derivative can be computed as
///\f[ f'(x)= (1 - |f(x)|)^2 \f]
struct FastSigmoidNeuron: public detail::NeuronBase<FastSigmoidNeuron>{
template<class T>
T function(T x)const{
return x/(1+std::abs(x));
}
template<class T>
T functionDerivative(T y)const{
return sqr(1.0 - std::abs(y));
}
};
/// \brief Wraps a given neuron type and implements dropout for it
///
/// The function works by setting the output randomly to 0 with a 50% chance.
/// The function assumes for the wrapped neuron type that the derivative
/// for all points for which the output is 0, is 0. This is true for the LogisticNeuron,
/// FastSigmoidNeuron and RectifierNeuron.
template<class Neuron>
struct DropoutNeuron: public detail::NeuronBase<DropoutNeuron<Neuron> >{
DropoutNeuron():m_probability(0.5),m_stochastic(true){}
template<class T>
T function(T x)const{
if(m_stochastic && Rng::coinToss(m_probability)){
return T(0);
}
else if(!m_stochastic){
return (1-m_probability)*m_neuron.function(x);
}else{
return m_neuron.function(x);
}
}
template<class T>
T functionDerivative(T y)const{
if(!m_stochastic){
return (1-m_probability)*m_neuron.functionDerivative(y/ (1-m_probability));
}else{
return m_neuron.functionDerivative(y);
}
}
void setProbability(double probability){m_probability = probability;}
void setStochastic(bool stochastic){m_stochastic = stochastic;}
private:
double m_probability;
bool m_stochastic;
Neuron m_neuron;
};
}
#endif
|