This file is indexed.

/usr/include/shark/LinAlg/Metrics.h is in libshark-dev 3.1.4+ds1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/*!
 * 
 *
 * \brief       Helper functions to calculate several norms and distances.
 * 
 * 
 *
 * \author      O.Krause M.Thuma
 * \date        2010-2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_LINALG_METRICS_H
#define SHARK_LINALG_METRICS_H

#include <shark/LinAlg/BLAS/blas.h>
#include <shark/Core/Math.h>
namespace shark{ namespace blas{
	
///////////////////////////////////////NORMS////////////////////////////////////////

/**
* \brief Normalized squared norm_2 (diagonal Mahalanobis).
*
* Contrary to some conventions, dimension-wise weights are considered instead of std. deviations:
* \f$ n^2(v) = \sum_i w_i v_i^2 \f$
* nb: the weights themselves are not squared, but multiplied onto the squared components
*/
template<class VectorT, class WeightT>
typename VectorT::value_type diagonalMahalanobisNormSqr(
	vector_expression<VectorT> const& vector, 
	vector_expression<WeightT> const& weights
) {
	SIZE_CHECK( vector().size() == weights().size() );
	return inner_prod(weights(),sqr(vector()));
}

/**
* \brief Normalized norm_2 (diagonal Mahalanobis).
*
* Contrary to some conventions, dimension-wise weights are considered instead of std. deviations:
* \f$ n^2(v) = \sqrt{\sum_i w_i v_i^2} \f$
* nb: the weights themselves are not squared, but multiplied onto the squared components
*/
template<class VectorT, class WeightT>
typename VectorT::value_type diagonalMahalanobisNorm(
	vector_expression<VectorT> const& vector, 
	vector_expression<WeightT> const& weights
) {
	SIZE_CHECK( vector().size() == weights().size() );
	return std::sqrt(diagonalMahalanobisNormSqr(vector,weights));
}

////////////////////////////////////////DISTANCES/////////////////////////////////////////////////

namespace detail{
	/**
	* \brief Normalized Euclidian squared distance (squared diagonal Mahalanobis) 
	* between two vectors, optimized for two Compressed arguments.
	*
	* Contrary to some conventions, dimension-wise weights are considered instead of std. deviations:
	* \f$ d^2(v) = \sum_i w_i (x_i-z_i)^2 \f$
	* NOTE: The weights themselves are not squared, but multiplied onto the squared components.
	*/
	template<class VectorT, class VectorU, class WeightT>
	typename VectorT::value_type diagonalMahalanobisDistanceSqr(
		VectorT const& op1,
		VectorU const& op2,
		WeightT const& weights,
		sparse_bidirectional_iterator_tag, 
		sparse_bidirectional_iterator_tag
	){
		using shark::sqr;
		typename VectorT::value_type sum=0;
		typename VectorT::const_iterator iter1=op1.begin();
		typename VectorU::const_iterator iter2=op2.begin();
		typename VectorT::const_iterator end1=op1.end();
		typename VectorU::const_iterator end2=op2.end();
		//be aware of empty vectors!
		while(iter1 != end1 && iter2 != end2)
		{
			std::size_t index1=iter1.index();
			std::size_t index2=iter2.index();
			if(index1==index2){
				sum += weights(index1) * sqr(*iter1-*iter2);
				++iter1;
				++iter2;
			}
			else if(index1<index2){
				sum += weights(index1) * sqr(*iter1);
				++iter1;
			}
			else {
				sum += weights(index2) * sqr(*iter2);
				++iter2;
			}
		}
		while(iter1 != end1)
		{
			std::size_t index1=iter1.index();
			sum += weights(index1) * sqr(*iter1);
			++iter1;
		}
		while(iter2 != end2)
		{
			std::size_t index2=iter2.index();
			sum += weights(index2) * sqr(*iter2);
			++iter2;
		}
		return sum;
	}
	
	/**
	* \brief Normalized Euclidian squared distance (squared diagonal Mahalanobis) 
	* between two vectors, optimized for one dense and one sparse argument
	*/
	template<class VectorT, class VectorU, class WeightT>
	typename VectorT::value_type diagonalMahalanobisDistanceSqr(
		VectorT const& op1,
		VectorU const& op2,
		WeightT const& weights,
		sparse_bidirectional_iterator_tag, 
		dense_random_access_iterator_tag
	){
		using shark::sqr;
		typename VectorT::const_iterator iter=op1.begin();
		typename VectorT::const_iterator end=op1.end();
		
		std::size_t index = 0;
		std::size_t pos = 0;
		typename VectorT::value_type sum=0;
		
		for(;iter != end;++iter,++pos){
			index = iter.index();
			for(;pos != index;++pos){
				sum += weights(pos) * sqr(op2(pos));
			}
			sum += weights(index) * sqr(*iter-op2(pos));
		}
		for(;pos != op2.size();++pos){
			sum += weights(pos) * sqr(op2(pos));
		}
		return sum;
	}
	template<class VectorT, class VectorU, class WeightT>
	typename VectorT::value_type diagonalMahalanobisDistanceSqr(
		VectorT const& op1,
		VectorU const& op2,
		WeightT const& weights,
		dense_random_access_iterator_tag arg1tag,
		sparse_bidirectional_iterator_tag arg2tag
	){
		return diagonalMahalanobisDistanceSqr(op2,op1,weights,arg2tag,arg1tag);
	}
	
	template<class VectorT, class VectorU, class WeightT>
	typename VectorT::value_type diagonalMahalanobisDistanceSqr(
		VectorT const& op1,
		VectorU const& op2,
		WeightT const& weights,
		dense_random_access_iterator_tag,
		dense_random_access_iterator_tag
	){
		return inner_prod(op1-op2,(op1-op2)*weights);
	}
	
	
	template<class MatrixT,class VectorU, class Result>
	void distanceSqrBlockVector(
		MatrixT const& operands,
		VectorU const& op2,
		Result& result
	){
		typedef typename Result::value_type value_type;
		scalar_vector< value_type > one(op2.size(),static_cast<value_type>(1.0));
		for(std::size_t i = 0; i != operands.size1(); ++i){
			result(i) = diagonalMahalanobisDistanceSqr(
				row(operands,i),op2,one,
				typename major_iterator<MatrixT>::type::iterator_category(),
				typename VectorU::iterator::iterator_category()
			);
		}
	}
	
	///\brief implementation for two input blocks where at least one matrix has only a few rows
	template<class MatrixX,class MatrixY, class Result>
	void distanceSqrBlockBlockRowWise(
		MatrixX const& X,
		MatrixY const& Y,
		Result& distances
	){
		std::size_t sizeX=X.size1();
		std::size_t sizeY=Y.size1();
		if(sizeX  < sizeY){//iterate over the rows of the block with less rows
			for(std::size_t i = 0; i != sizeX; ++i){
				matrix_row<Result> distanceRow = row(distances,i);
				distanceSqrBlockVector(
					Y,row(X,i),distanceRow
				);
			}
		}else{
			for(std::size_t i = 0; i != sizeY; ++i){
				matrix_column<Result> distanceCol = column(distances,i);
				distanceSqrBlockVector(
					X,row(Y,i),distanceCol
				);
			}
		}
	}
	
	///\brief implementation for two dense input blocks
	template<class MatrixX,class MatrixY, class Result>
	void distanceSqrBlockBlock(
		MatrixX const& X,
		MatrixY const& Y,
		Result& distances,
		dense_random_access_iterator_tag,
		dense_random_access_iterator_tag
	){
		typedef typename Result::value_type value_type;
		std::size_t sizeX=X.size1();
		std::size_t sizeY=Y.size1();
		ensure_size(distances,X.size1(),Y.size1());
		if(sizeX < 10 || sizeY<10){
			distanceSqrBlockBlockRowWise(X,Y,distances);
			return;
		}
		//fast blockwise iteration
		//uses: (a-b)^2 = a^2 -2ab +b^2
		noalias(distances) = -2*prod(X,trans(Y));
		//first a^2+b^2 
		vector<value_type> ySqr(sizeY);
		for(std::size_t i = 0; i != sizeY; ++i){
			ySqr(i) = norm_sqr(row(Y,i));
		}
		//initialize d_ij=x_i^2+y_i^2
		for(std::size_t i = 0; i != sizeX; ++i){
			value_type xSqr = norm_sqr(row(X,i));
			noalias(row(distances,i)) += repeat(xSqr,sizeY) + ySqr;
		}
	}
	//\brief default implementation used, when one of the arguments is not dense
	template<class MatrixX,class MatrixY,class Result>
	void distanceSqrBlockBlock(
		MatrixX const& X,
		MatrixY const& Y,
		Result& distances,
		sparse_bidirectional_iterator_tag,
		sparse_bidirectional_iterator_tag
	){
		distanceSqrBlockBlockRowWise(X,Y,distances);
	}
}

/**
* \ingroup shark_globals
* 
* @{
*/

/** 
* \brief Normalized Euclidian squared distance (squared diagonal Mahalanobis) 
* between two vectors.
*
* NOTE: The weights themselves are not squared, but multiplied onto the squared components.
*/
template<class VectorT, class VectorU, class WeightT>
typename VectorT::value_type diagonalMahalanobisDistanceSqr(
	vector_expression<VectorT> const& op1,
	vector_expression<VectorU> const& op2, 
	vector_expression<WeightT> const& weights
){
	SIZE_CHECK(op1().size()==op2().size());
	SIZE_CHECK(op1().size()==weights().size());
	//dispatch given the types of the argument
	return detail::diagonalMahalanobisDistanceSqr(
		op1(), op2(), weights(),
		typename VectorT::iterator::iterator_category(),
		typename VectorU::iterator::iterator_category()
	);
}

/**
* \brief Squared distance between two vectors.
*/
template<class VectorT,class VectorU>
typename VectorT::value_type distanceSqr(
	vector_expression<VectorT> const& op1,
	vector_expression<VectorU> const& op2
){
	SIZE_CHECK(op1().size()==op2().size());
	typedef typename VectorT::value_type value_type;
	scalar_vector< value_type > one(op1().size(),static_cast<value_type>(1.0));
	return diagonalMahalanobisDistanceSqr(op1,op2,one);
}

/**
* \brief Squared distance between a vector and a set of vectors and stores the result in the vector of distances
*
* The squared distance between the vector and every row-vector of the matrix is calculated.
* This can be implemented much more efficiently.
*/
template<class MatrixT,class VectorU, class VectorR>
void distanceSqr(
	matrix_expression<MatrixT> const& operands,
	vector_expression<VectorU> const& op2,
	vector_expression<VectorR>& distances
){
	SIZE_CHECK(operands().size2()==op2().size());
	ensure_size(distances,operands().size1());
	detail::distanceSqrBlockVector(
		operands(),op2(),distances()
	);
}

/**
* \brief Squared distance between a vector and a set of vectors
*
* The squared distance between the vector and every row-vector of the matrix is calculated.
* This can be implemented much more efficiently.
*/
template<class MatrixT,class VectorU>
vector<typename MatrixT::value_type> distanceSqr(
	matrix_expression<MatrixT> const& operands,
	vector_expression<VectorU> const& op2
){
	SIZE_CHECK(operands().size2()==op2().size());
	vector<typename MatrixT::value_type> distances(operands().size1());
	distanceSqr(operands,op2,distances);
	return distances;
}

/**
* \brief Squared distance between a vector and a set of vectors
*
* The squared distance between the vector and every row-vector of the matrix is calculated.
* This can be implemented much more efficiently.
*/
template<class MatrixT,class VectorU>
vector<typename MatrixT::value_type> distanceSqr(
	vector_expression<VectorU> const& op1,
	matrix_expression<MatrixT> const& operands
){
	SIZE_CHECK(operands().size2()==op1().size());
	vector<typename MatrixT::value_type> distances(operands().size1());
	distanceSqr(operands,op1,distances);
	return distances;
}

/**
* \brief Squared distance between the vectors of two sets of vectors
*
* The squared distance between every row-vector of the first matrix x
* and every row-vector of the second matrix y is calculated.
* This can be implemented much more efficiently. 
* The results are returned as a matrix, where the element in the i-th 
* row and the j-th column is distanceSqr(x_i,y_j).
*/
template<class MatrixT,class MatrixU>
matrix<typename MatrixT::value_type> distanceSqr(
	matrix_expression<MatrixT> const& X,
	matrix_expression<MatrixU> const& Y
){
	typedef matrix<typename MatrixT::value_type> Matrix;
	SIZE_CHECK(X().size2()==Y().size2());
	std::size_t sizeX=X().size1();
	std::size_t sizeY=Y().size1();
	Matrix distances(sizeX, sizeY);
	detail::distanceSqrBlockBlock(
		X(),Y(),distances,
		typename major_iterator<MatrixT>::type::iterator_category(),
		typename major_iterator<MatrixU>::type::iterator_category()
	);
	return distances;
	
}


/**
* \brief Calculates distance between two vectors.
*/
template<class VectorT,class VectorU>
typename VectorT::value_type distance(
	vector_expression<VectorT> const& op1,
	vector_expression<VectorU> const& op2
){
	SIZE_CHECK(op1().size()==op2().size());
	return std::sqrt(distanceSqr(op1,op2));
}

/**
* \brief Normalized euclidian distance (diagonal Mahalanobis) between two vectors.
*
* Contrary to some conventions, dimension-wise weights are considered instead of std. deviations:
* \f$ d(v) = \left( \sum_i w_i (x_i-z_i)^2 \right)^{1/2} \f$
* nb: the weights themselves are not squared, but multiplied onto the squared components
*/
template<class VectorT, class VectorU, class WeightT>
typename VectorT::value_type diagonalMahalanobisDistance(
	vector_expression<VectorT> const& op1,
	vector_expression<VectorU> const& op2, 
	vector_expression<WeightT> const& weights
){
	SIZE_CHECK(op1().size()==op2().size());
	SIZE_CHECK(op1().size()==weights().size());
	return std::sqrt(diagonalMahalanobisDistanceSqr(op1(), op2(), weights));
}
/** @}*/
}}

#endif