/usr/include/shark/LinAlg/KernelMatrix.h is in libshark-dev 3.1.4+ds1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | //===========================================================================
/*!
*
*
* \brief Kernel Gram matrix
*
*
* \par
*
*
*
* \author T. Glasmachers
* \date 2007-2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_LINALG_KERNELMATRIX_H
#define SHARK_LINALG_KERNELMATRIX_H
#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>
#include <shark/Models/Kernels/KernelHelpers.h>
#include <vector>
#include <cmath>
namespace shark {
///
/// \brief Kernel Gram matrix
///
/// \par
/// The KernelMatrix is the most prominent type of matrix
/// for quadratic programming. It provides the Gram matrix
/// of a fixed data set with respect to an inner product
/// implicitly defined by a kernel function.
///
/// \par
/// NOTE: The KernelMatrix class stores pointers to the
/// data, instead of maintaining a copy of the data. Thus,
/// it implicitly assumes that the dataset is not altered
/// during the lifetime of the KernelMatrix object. This
/// condition is ensured as long as the class is used via
/// the various SVM-trainers.
///
template <class InputType, class CacheType>
class KernelMatrix
{
public:
typedef CacheType QpFloatType;
/// Constructor
/// \param kernelfunction kernel function defining the Gram matrix
/// \param data data to evaluate the kernel function
KernelMatrix(AbstractKernelFunction<InputType> const& kernelfunction,
Data<InputType> const& data)
: kernel(kernelfunction)
, m_data(data)
, m_accessCounter( 0 )
{
std::size_t elements = m_data.numberOfElements();
x.resize(elements);
typename Data<InputType>::const_element_range::iterator iter=m_data.elements().begin();
for(std::size_t i = 0; i != elements; ++i,++iter){
x[i]=iter.getInnerIterator();
}
}
/// return a single matrix entry
QpFloatType operator () (std::size_t i, std::size_t j) const
{ return entry(i, j); }
/// return a single matrix entry
QpFloatType entry(std::size_t i, std::size_t j) const
{
++m_accessCounter;
return (QpFloatType)kernel.eval(*x[i], *x[j]);
}
/// \brief Computes the i-th row of the kernel matrix.
///
///The entries start,...,end of the i-th row are computed and stored in storage.
///There must be enough room for this operation preallocated.
void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const{
m_accessCounter += end-start;
typename AbstractKernelFunction<InputType>::ConstInputReference xi = *x[i];
SHARK_PARALLEL_FOR(int j = (int)start; j < (int) end; j++)
{
storage[j-start] = QpFloatType(kernel.eval(xi, *x[j]));
}
}
/// \brief Computes the kernel-matrix
template<class M>
void matrix(
blas::matrix_expression<M> & storage
) const{
calculateRegularizedKernelMatrix(kernel,m_data,storage);
}
/// swap two variables
void flipColumnsAndRows(std::size_t i, std::size_t j){
using std::swap;
swap(x[i],x[j]);
}
/// return the size of the quadratic matrix
std::size_t size() const
{ return x.size(); }
/// query the kernel access counter
unsigned long long getAccessCount() const
{ return m_accessCounter; }
/// reset the kernel access counter
void resetAccessCount()
{ m_accessCounter = 0; }
protected:
/// Kernel function defining the kernel Gram matrix
const AbstractKernelFunction<InputType>& kernel;
Data<InputType> m_data;
typedef typename Batch<InputType>::const_iterator PointerType;
/// Array of data pointers for kernel evaluations
std::vector<PointerType> x;
/// counter for the kernel accesses
mutable unsigned long long m_accessCounter;
};
//~ ///\brief Specialization for dense vectors which often can be computed much faster
//~ template <class T, class CacheType>
//~ class KernelMatrix<blas::vector<T>, CacheType>
//~ {
//~ public:
//~ //////////////////////////////////////////////////////////////////
//~ // The types below define the type used for caching kernel values. The default is float,
//~ // since this type offers sufficient accuracy in the vast majority of cases, at a memory
//~ // cost of only four bytes. However, the type definition makes it easy to use double instead
//~ // (e.g., in case high accuracy training is needed).
//~ typedef CacheType QpFloatType;
//~ typedef blas::vector<T> InputType;
//~ /// Constructor
//~ /// \param kernelfunction kernel function defining the Gram matrix
//~ /// \param data data to evaluate the kernel function
//~ KernelMatrix(
//~ AbstractKernelFunction<InputType> const& kernelfunction,
//~ Data<InputType> const& data)
//~ : kernel(kernelfunction)
//~ , m_data(data)
//~ , m_batchStart(data.numberOfBatches())
//~ , m_accessCounter( 0 )
//~ {
//~ m_data.makeIndependent();
//~ std::size_t elements = m_data.numberOfElements();
//~ x.resize(elements);
//~ typename Data<InputType>::element_range::iterator iter=m_data.elements().begin();
//~ for(std::size_t i = 0; i != elements; ++i,++iter){
//~ x[i]=iter.getInnerIterator();
//~ }
//~ for(std::size_t i = 0,start = 0; i != m_data.numberOfBatches(); ++i){
//~ m_batchStart[i] = start;
//~ start+= m_data.batch(i).size1();
//~ }
//~ }
//~ /// return a single matrix entry
//~ QpFloatType operator () (std::size_t i, std::size_t j) const
//~ { return entry(i, j); }
//~ /// return a single matrix entry
//~ QpFloatType entry(std::size_t i, std::size_t j) const
//~ {
//~ ++m_accessCounter;
//~ return (QpFloatType)kernel.eval(*x[i], *x[j]);
//~ }
//~ /// \brief Computes the i-th row of the kernel matrix.
//~ ///
//~ ///The entries start,...,end of the i-th row are computed and stored in storage.
//~ ///There must be enough room for this operation preallocated.
//~ void row(std::size_t k, std::size_t start,std::size_t end, QpFloatType* storage) const
//~ {
//~ m_accessCounter +=end-start;
//~ typename AbstractKernelFunction<InputType>::ConstInputReference xi = *x[k];
//~ typename blas::matrix<T> mx(1,xi.size());
//~ noalias(blas::row(mx,0))=xi;
//~ int numBatches = (int)m_data.numberOfBatches();
//~ SHARK_PARALLEL_FOR(int i = 0; i < numBatches; i++)
//~ {
//~ std::size_t pos = m_batchStart[i];
//~ std::size_t batchSize = m_data.batch(i).size1();
//~ if(!(pos+batchSize < start || pos > end)){
//~ RealMatrix rowpart(1,batchSize);
//~ kernel.eval(mx,m_data.batch(i),rowpart);
//~ std::size_t batchStart = (start <=pos) ? 0: start-pos;
//~ std::size_t batchEnd = (pos+batchSize > end) ? end-pos: batchSize;
//~ for(std::size_t j = batchStart; j != batchEnd;++j){
//~ storage[pos+j-start] = static_cast<QpFloatType>(rowpart(0,j));
//~ }
//~ }
//~ }
//~ }
//~ /// \brief Computes the kernel-matrix
//~ template<class M>
//~ void matrix(
//~ blas::matrix_expression<M> & storage
//~ ) const{
//~ calculateRegularizedKernelMatrix(kernel,m_data,storage);
//~ }
//~ /// swap two variables
//~ void flipColumnsAndRows(std::size_t i, std::size_t j){
//~ if( i == j ) return;
//~ swap(*x[i],*x[j]);
//~ }
//~ /// return the size of the quadratic matrix
//~ std::size_t size() const
//~ { return x.size(); }
//~ /// query the kernel access counter
//~ unsigned long long getAccessCount() const
//~ { return m_accessCounter; }
//~ /// reset the kernel access counter
//~ void resetAccessCount()
//~ { m_accessCounter = 0; }
//~ protected:
//~ /// Kernel function defining the kernel Gram matrix
//~ const AbstractKernelFunction<InputType>& kernel;
//~ Data<InputType> m_data;
//~ typedef typename Batch<InputType>::iterator PointerType;
//~ /// Array of data pointers for kernel evaluations
//~ std::vector<PointerType> x;
//~ std::vector<std::size_t> m_batchStart;
//~ mutable unsigned long long m_accessCounter;
//~ };
}
#endif
|